

Learn Windows PowerShell
in a Month of Lunches

Learn Windows PowerShell
in a Month of Lunches

DON JONES

M A N N I N G
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

® In a Month of Lunches is a registered trademark of Don Jones.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Maria Townsley
20 Baldwin Road Copyeditor: Andy Carroll
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Marija Tudor

Cover designer: Leslie Haimes

ISBN: 9781617290213
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

 For Chris ... for another fifteen years and more

Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

brief contents
1 ■ Before you begin 1

2 ■ Running commands 9

3 ■ Using the help system 23

4 ■ The pipeline: connecting commands 37

5 ■ Adding commands 48

6 ■ Objects: just data by another name 61

7 ■ The pipeline, deeper 72

8 ■ Formatting—and why it’s done on the right 85

9 ■ Filtering and comparisons 99

10 ■ Remote control: one to one, and one to many 107

11 ■ Tackling Windows Management Instrumentation 120

12 ■ Multitasking with background jobs 140

13 ■ Working with bunches of objects, one at a time 144

14 ■ Security alert! 158

15 ■ Variables: a place to store your stuff 169

16 ■ Input and output 182

17 ■ You call this scripting? 191
vii

18 ■ Sessions: remote control, with less work 203

Download from Wow! eBook <www.wowebook.com>

viii

19 ■ From command to script to function 211

20 ■ Adding logic and loops 220

21 ■ Creating your own “cmdlets” and modules 228

22 ■ Trapping and handling errors 242

23 ■ Debugging techniques 253

24 ■ Additional random tips, tricks, and techniques 265

25 ■ Final exam: tackling an administrative task from
scratch 276

26 ■ Beyond the operating system: taking PowerShell
further 281

27 ■ Never the end 288

28 ■ PowerShell cheat sheet 292
Download from Wow! eBook <www.wowebook.com>

contents
preface xix
about this book xxi
about the author xxiii
acknowledgments xxiv

1 Before you begin 1
1.1 Why you can’t afford to ignore PowerShell 1
1.2 Is this book for you? 3
1.3 How to use this book 3
1.4 Setting up your lab environment 5
1.5 Installing Windows PowerShell 6
1.6 Online resources 7
1.7 Being immediately effective with PowerShell 8

2 Running commands 9
2.1 Not scripting: just running commands 9
2.2 Opening PowerShell 10
2.3 Managing files and folders—you know this! 12
2.4 Accuracy counts 13
ix

2.5 Not just files and folders: introducing PSDrives 14

Download from Wow! eBook <www.wowebook.com>

x

2.6 Support for external commands 16
2.7 The same old commands—almost 17
2.8 Common points of confusion 21

Typing cmdlet names 21 ■ Typing parameters 21

2.9 Lab 21

3 Using the help system 23
3.1 The help system: how you discover commands 23
3.2 Asking for help 24
3.3 Using help to find commands 25
3.4 Interpreting the help 27

Parameter sets and common parameters 27 ■ Optional and
mandatory parameters 28 ■ Positional parameters 29
Parameter values 30 ■ Examples 33

3.5 Accessing “about” topics 33
3.6 Accessing online help 34
3.7 Lab 35
3.8 Ideas for on your own 36

4 The pipeline: connecting commands 37
4.1 Connect one command to another: less work for you! 37
4.2 Exporting to a CSV or XML file 37
4.3 Piping to a file or printer 42
4.4 Converting to HTML 44
4.5 Using cmdlets to kill processes and stop services 45
4.6 Lab 46

5 Adding commands 48
5.1 How one shell can do everything 48
5.2 About product-specific management shells 49
5.3 Extensions: finding and adding snap-ins 50
5.4 Extensions: finding and adding modules 52
5.5 Command conflict and removing extensions 54
5.6 Finding help on newly added commands 54
5.7 Playing with Server Manager via command line! 55
5.8 Profile scripts: preloading extensions when the shell
starts 58

Download from Wow! eBook <www.wowebook.com>

xi

5.9 Common points of confusion 59
5.10 Lab 60
5.11 Ideas for on your own 60

6 Objects: just data by another name 61
6.1 What are objects? 61
6.2 Why PowerShell uses objects 62
6.3 Discovering objects: Get-Member 64
6.4 Object attributes, or “properties” 65
6.5 Object actions, or “methods” 66
6.6 Sorting objects 66
6.7 Selecting the properties you want 67
6.8 Objects until the very end 68
6.9 Common points of confusion 70

6.10 Lab 70

7 The pipeline, deeper 72
7.1 The pipeline: enabling power with less typing 72
7.2 Pipeline input ByValue, or why Stop-Service works 72
7.3 Parentheses instead of pipelines 76
7.4 Pipeline input ByPropertyName 77
7.5 Creating new AD users, fast and easy 78
7.6 When things don’t line up: custom properties 81
7.7 Extracting the value from a single property 82
7.8 Lab 83

8 Formatting—and why it’s done on the right 85
8.1 Formatting: making what you see prettier 85
8.2 About the default formatting 86
8.3 Formatting tables 89
8.4 Formatting lists 90
8.5 Formatting wide 91
8.6 Custom columns and list entries 91
8.7 Going out: to a file, a printer, or the host 93
8.8 Another out: GridViews 94
Download from Wow! eBook <www.wowebook.com>

xii

8.9 Common points of confusion 95
Always format right 95 ■ One type of object at a time,
please 96

8.10 Lab 97
8.11 Ideas for on your own 98

9 Filtering and comparisons 99
9.1 Making the shell give you just what you need 99
9.2 Filter left 100
9.3 Comparison operators 100
9.4 Filtering objects out of the pipeline 102
9.5 The iterative command-line model 103
9.6 Common points of confusion 105

Filter left, please 105 ■ When $_ is allowed 105

9.7 Lab 106
9.8 Ideas for on your own 106

10 Remote control: one to one, and one to many 107
10.1 The idea behind remote PowerShell 107
10.2 WinRM overview 109
10.3 Using Enter-PSSession and Exit-PSSession for 1:1

remoting 111
10.4 Using Invoke-Command for one-to-many remoting 112
10.5 Differences between remote and local commands 115

Invoke-Command versus -ComputerName 115
Local versus remote processing 116

10.6 But wait, there’s more 117
10.7 Common points of confusion 118
10.8 Lab 119
10.9 Ideas for on your own 119

11 Tackling Windows Management Instrumentation 120
11.1 Retrieving management information 120
11.2 A WMI primer 121

11.3 The bad news about WMI 122

Download from Wow! eBook <www.wowebook.com>

xiii

11.4 Exploring WMI 123
11.5 Using Get-WmiObject 125
11.6 WMI documentation 129
11.7 Common points of confusion 130
11.8 Lab 130
11.9 Ideas for on your own 131

12 Multitasking with background jobs 132
12.1 Making PowerShell do multiple things at the same

time 132
12.2 Synchronous versus asynchronous 132
12.3 Creating a local job 133
12.4 WMI, as a job 134
12.5 Remoting, as a job 135
12.6 Getting job results 136
12.7 Working with child jobs 139
12.8 Commands for managing jobs 140
12.9 Common points of confusion 143

13 Working with bunches of objects, one at a time 144
13.1 Automation for mass management 144
13.2 The preferred way: batch cmdlets 145
13.3 The WMI way: invoking WMI methods 146
13.4 The backup plan: enumerating objects 150
13.5 Common points of confusion 154

Which way is the right way? 154 ■ WMI methods versus
cmdlets 155 ■ Method documentation 156 ■ ForEach-
Object confusion 157

13.6 Lab 157

14 Security alert! 158
14.1 Keeping the shell secure 158
14.2 Windows PowerShell security goals 159
14.3 Execution policy and code signing 160

Execution policy settings 160 ■ Digital code signing 163
Download from Wow! eBook <www.wowebook.com>

xiv

14.4 Other security measures 166
14.5 Other security holes? 166
14.6 Security recommendations 167
14.7 Lab 168

15 Variables: a place to store your stuff 169
15.1 Introduction to variables 169
15.2 Storing values in variables 170
15.3 Fun tricks with quotes 172
15.4 Storing lots of objects in a variable 174
15.5 Declaring a variable’s type 177
15.6 Commands for working with variables 180
15.7 Variable best practices 180
15.8 Common points of confusion 180
15.9 Lab 181

15.10 Ideas for on your own 181

16 Input and output 182
16.1 Prompting for, and displaying, information 182
16.2 Read-Host 183
16.3 Write-Host 186
16.4 Write-Output 187
16.5 Other ways to write 188
16.6 Lab 189
16.7 Ideas for on your own 190

17 You call this scripting? 191
17.1 Not programming … more like batch files 191
17.2 Making commands repeatable 192
17.3 Parameterizing commands 193
17.4 Creating a parameterized script 194
17.5 Documenting your script 196
17.6 One script, one pipeline 198
17.7 A quick look at scope 201
17.8 Lab 202

17.9 Ideas for on your own 202

Download from Wow! eBook <www.wowebook.com>

xv

18 Sessions: remote control, with less work 203
18.1 Making PowerShell remoting a bit easier 203
18.2 Creating and using reusable sessions 203
18.3 Using sessions with Enter-PSSession 205
18.4 Using sessions with Invoke-Command 207
18.5 Implicit remoting: importing a session 208
18.6 Lab 209
18.7 Ideas for on your own 210

19 From command to script to function 211
19.1 Turning a command into a reusable tool 211
19.2 Modularizing: one task, one function 212
19.3 Simple and parameterized functions 213
19.4 Returning a value from a function 215
19.5 Returning objects from a function 216
19.6 Lab 218
19.7 Ideas for on your own 219

20 Adding logic and loops 220
20.1 Automating complex, multi-step processes 220
20.2 Now we’re “scripting” 220
20.3 The If construct 221
20.4 The Switch construct 223
20.5 The For construct 225
20.6 The ForEach construct 225
20.7 Why scripting isn’t always necessary 226
20.8 Lab 227

21 Creating your own “cmdlets” and modules 228
21.1 Turning a reusable tool into a full-fledged cmdlet 228
21.2 Functions that work in the pipeline 229
21.3 Functions that look like cmdlets 235
21.4 Bundling functions into modules 238
21.5 Keeping support functions private 239
21.6 Lab 240

21.7 Ideas for on your own 241

Download from Wow! eBook <www.wowebook.com>

xvi

22 Trapping and handling errors 242
22.1 Dealing with errors you just knew were going to

happen 242
22.2 Errors and exceptions 242
22.3 The $ErrorActionPreference variable 243
22.4 The -ErrorAction parameter 244
22.5 Using a Trap construct 245
22.6 Trap scope 246
22.7 Using a Try construct 247
22.8 The -ErrorVariable parameter 249
22.9 Common points of confusion 251

22.10 Lab 251
22.11 Ideas for on your own 252

23 Debugging techniques 253
23.1 An easy guide to eliminating bugs 253

Syntax errors 253 ■ Logic errors 255

23.2 Identifying your expectations 256
23.3 Adding trace code 257
23.4 Working with breakpoints 261
23.5 Common points of confusion 263
23.6 Lab 264

24 Additional random tips, tricks, and techniques 265
24.1 Profiles, prompts, and colors: customizing the shell 265

PowerShell profiles 265 ■ Customizing the prompt 267
Tweaking colors 268

24.2 Operators: -as, -is, -replace, -join, -split 269
-as and -is 269 ■ -replace 270 ■ -join and -split 270

24.3 String manipulation 271
24.4 Date manipulation 272
24.5 Dealing with WMI dates 274
Download from Wow! eBook <www.wowebook.com>

xvii

25 Final exam: tackling an administrative task from scratch 276
25.1 Tips before you begin 276
25.2 Lab 276
25.3 Lab solution 278

26 Beyond the operating system: taking PowerShell further 281
26.1 Everything you’ve learned works the same

everywhere 281
26.2 SharePoint Server 2010 282
26.3 VMware vSphere and vCenter 285
26.4 Third-party Active Directory management 286

27 Never the end 288
27.1 Ideas for further exploration 288
27.2 “Now that I’m done, where do I start?” 289
27.3 Other resources you’ll grow to love 290

28 PowerShell cheat sheet 292
28.1 Punctuation 292
28.2 Help file 295
28.3 Operators 296
28.4 Custom property and column syntax 296
28.5 Pipeline parameter input 297
28.6 When to use $_ 298

index 299
Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

preface
I’ve been teaching and writing about Windows PowerShell for a long time. As I began
contemplating this book, I realized that most PowerShell writers and teachers—includ-
ing myself—were forcing our students to approach the shell as a kind of programming
language. Most PowerShell books are into “scripting” by the third or fourth chapter, yet
more and more PowerShell students were backing away from that programming-ori-
ented approach. Those students wanted to use the shell as a shell, at least at first, and
we simply weren’t delivering a learning experience that matched that desire.

 So I decided to take a swing at it. A blog post on WindowsITPro.com proposed a
table of contents for this book, and ample feedback from the blog’s readers fine-tuned
it into the book you’re about to read. I wanted to keep each chapter short, focused,
and easy to cover in a short period of time—because I know administrators don’t have
a lot of free time, and often have to learn on the fly.

 I also wanted a book that would focus on PowerShell itself, and not on the myriad
technologies that PowerShell touches, like Exchange Server, SQL Server, System Cen-
ter, and so on. I truly feel that by learning to use the shell properly, you can teach
yourself to administer all of those “PowerShell-ed” server products. So this book tries
to focus on the core of using PowerShell. Even if you’re also using a “cookbook” style
of book, which provides ready-to-use answers for specific administrative tasks, this
book will help you understand what those examples are doing. That understanding
will make it easier to modify those examples for other purposes, and eventually to con-
struct your own commands and scripts from scratch.
xix

Download from Wow! eBook <www.wowebook.com>

PREFACExx

 I hope this book won’t be the only PowerShell education that you pursue. In fact,
this book’s companion website, MoreLunches.com, is designed to help you continue
that education in small chunks. It offers free videos that correspond to this book’s
chapters, letting you see and hear my demonstrations of key techniques. I’ll also be
posting supplemental articles, and recommending additional resources for you to
investigate.

 If you happen to run into me at a conference—I’m a regular at Windows Connec-
tions, TechMentor events, and Microsoft TechEd—I hope you’ll come up and say
hello. Let me know how this book is working for you, and what other resources you’ve
found useful. You can also contact me via email through ConcentratedTech.com, or
on manning.com in this book’s discussion forum.

 Enjoy—and good luck with the shell.
Download from Wow! eBook <www.wowebook.com>

about this book
Most of what you’ll need to know about this book is covered in chapter 1, but there
are a few things that we should mention up front.

 First of all, if you plan to follow along with my examples and complete the hands-
on exercises, you’ll need a virtual machine or computer running Windows Server
2008 R2. I cover that in more detail in chapter 1.

 Second, be prepared to read this book from start to finish, covering each chapter
in order. Again, this is something I’ll explain in more detail in chapter 1, but the idea
is that each chapter introduces a few new things that you will need in subsequent
chapters.

 Third, this book contains a lot of code snippets. Most of them are quite short, so
you should be able to type them quite easily. In fact, I recommend that you do type
them, since doing so will help reinforce an essential PowerShell skill: accurate typing!
Longer code snippets are given in listings and are available for download at http://
MoreLunches.com or from the publisher’s website at www.manning.com/Learn
WindowsPowerShellinaMonthofLunches.

 That said, there are a few conventions that you should be aware of. Code will
always appear in a special font, just like this example:

Get-WmiObject –class Win32_OperatingSystem

➥ –computerName SERVER-R2

That example also illustrates the line-continuation character used in this book. It indi-
cates that those two lines should actually be typed as a single line in PowerShell. In
xxi

other words, don’t hit Enter or Return after Win32_OperatingSystem—keep right

Download from Wow! eBook <www.wowebook.com>

www.manning.com/LearnWindowsPowerShellinaMonthofLunches
www.manning.com/LearnWindowsPowerShellinaMonthofLunches
http://Morelunches.com
http://Morelunches.com

ABOUT THIS BOOKxxii

on typing. PowerShell allows for very long lines, but the pages of this book can only
hold so much.

 Sometimes, you’ll also see that code font within the text itself, such as when I write
Get-Command. That just lets you know that you’re looking at a command, parameter,
or other element that you would actually type within the shell.

 Fourth is a tricky topic that I’ll bring up again in several chapters: the backtick
character (`). Here’s an example:

Invoke-Command –scriptblock { Dir } ̀
-computerName SERVER-R2,localhost

The character at the end of the first line isn’t a stray bit of ink—it’s a real character
that you would type. On a U.S. keyboard, the backtick (or grave accent) is usually near
the upper left, under the Escape key, on the same key as the tilde character (~). When
you see the backtick in a code listing, type it exactly as is. Furthermore, when it
appears at the end of a line—as in the preceding example—make sure that it’s the
very last character on that line. If you allow any spaces or tabs to appear after it, the
backtick won’t work correctly, and neither will the code example.

 Finally, I’ll occasionally direct you to internet resources. Where those URLs are par-
ticularly long and difficult to type, I’ve replaced them with Manning-based shortened
URLs that look like http://mng.bz/S085 (you’ll see that one in chapter 1).

Author Online

The purchase of Learn Windows PowerShell in a Month of Lunches includes access to a
private forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and other users. To
access and subscribe to the forum, point your browser to www.manning.com/Learn
WindowsPowerShellinaMonthofLunches, and click the Author Online link. This page
provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
Download from Wow! eBook <www.wowebook.com>

www.manning.com/LearnWindowsPowerShellinaMonthofLunches
www.manning.com/LearnWindowsPowerShellinaMonthofLunches

about the author
Don Jones is a multiple-year recipient of Microsoft’s prestigious Most Valuable Profes-
sional (MVP) Award for his work with Windows PowerShell. He writes the Windows
PowerShell column for Microsoft TechNet Magazine, the PowerShell with a Purpose Blog
for WindowsITPro.com, and the “Decision Maker” column for Redmond Magazine. Don
is a prolific technology author and has published more than a dozen print books since
2001. He has also authored numerous free ebooks for RealtimePublishers.com and
currently serves as that company’s Editor-in-Chief and CTO. Don is a Senior Partner
and Principal Technologist for Concentrated Technology (ConcentratedTech.com),
an IT education and strategic consulting firm. Don’s first Windows scripting language
was KiXtart, all the way back in the mid-1990s. He quickly graduated to VBScript in
1995 and was one of the first IT pros to start using early releases of a new Microsoft
product code-named “Monad”—which later became Windows PowerShell. Don lives
in Las Vegas and travels all over the world delivering IT training (especially in Power-
Shell) and speaking at IT conferences.
xxiii

Download from Wow! eBook <www.wowebook.com>

acknowledgments
Books simply don’t write, edit, and publish themselves. I’d like to thank everyone at
Manning Publications who decided to take a chance on a very different kind of book
for Windows PowerShell, and who worked so hard to make it happen.

 I’d also like to acknowledge everyone who provided feedback for this book, start-
ing with the simple blog post on WindowsITPro.com that got the table of contents roll-
ing, and continuing through all the Manning Early Access Program (MEAP) readers
and the outside manuscript reviewers, including Ray Booysen, Margriet Bruggeman,
Nikander Bruggeman, Chuck Durfee, David Moravec, and Dave Pawson. Special
thanks to Richard Siddaway for his final technical review of the manuscript during
production.
xxiv

Download from Wow! eBook <www.wowebook.com>

Before you begin
I’ve been teaching Windows PowerShell since version 1 was released in 2006. Back
then, most of the folks using the shell were pretty experienced VBScript users, and
they were eager to apply their VBScript skills to learning PowerShell. As a result, I
and the other folks who taught the shell, wrote books and articles, and so forth, all
adopted a teaching style that more or less leveraged prior programming or script-
ing skills.

 Since late 2009, however, a shift has occurred. More and more administrators
who didn’t have prior VBScript experience started trying to learn the shell. All of a
sudden, my old teaching patterns didn’t work very well, because I was focused on
scripting and programming. That’s when I realized that PowerShell isn’t really a
scripting language. It’s really a command-line shell where you run command-line
utilities. Like all good shells, it has scripting capabilities, but you don’t have to use
them, and you certainly don’t have to start with them. I started changing my teach-
ing patterns, beginning with the many conferences I speak at each year, and mov-
ing into the instructor-led training courseware that I’d written.

 This book is the result of that process, and it’s the best way that I’ve yet devised
to teach PowerShell to someone who might not have a scripting background
(although it certainly doesn’t hurt if you do). But before we jump into the actual
instruction, let me set the stage for you.

1.1 Why you can’t afford to ignore PowerShell
Batch. KiXtart. VBScript. Let’s face it; Windows PowerShell isn’t exactly Microsoft’s
(or anyone else’s) first effort at providing automation capabilities to Windows
1

administrators. I think it’s valuable to understand why you should care about

Download from Wow! eBook <www.wowebook.com>

2 CHAPTER 1 Before you begin

PowerShell, so that you can feel comfortable that the time you’ll commit to learning
it will pay off for you. Let’s start by considering what life was like before PowerShell
came along, and look at some of the advantages now that we have our new shell.

LIFE WITHOUT POWERSHELL

Windows administrators have always been happy clicking around in the graphical user
interface (GUI) to accomplish their chores. After all, the GUI is pretty much the whole
point of Windows—the operating system isn’t called “Text,” after all! GUIs are great
because they enable you to discover what you can do. I remember the first time I
opened Active Directory Users and Computers: I hovered over icons and read tooltips,
I pulled down menus, and I right-clicked things, all to see what was available. GUIs
definitely make learning a tool easier. Unfortunately, GUIs have zero return on that
investment. If it takes you five minutes to create a new user in Active Directory (and
assuming you’re filling in a lot of the fields, that’s pretty reasonable), you’ll never get
any faster than that. A hundred users will take five hundred minutes—there’s no way,
short of learning to type and click a bit faster, to make the process go any quicker.

 Microsoft has tried to deal with that problem a bit haphazardly, and VBScript was
probably the most successful attempt. It might have taken you an hour to write a
VBScript that could import new users from a CSV file, but once you’d invested that
hour, creating users in the future would only take a few seconds. The problem with
VBScript is that it wasn’t a wholehearted effort on Microsoft’s part. Microsoft had to
remember to make things VBScript-accessible, and when they forgot (or didn’t have
time), you were stuck. Want to change the IP address of a network adapter using
VBScript? Okay, you can. Want to check its link speed? You can’t, because nobody
remembered to hook that up in a way that VBScript could get to. Sorry. Jeffrey Snover,
the architect of Windows PowerShell, calls this “the last mile”: you can do a lot with
VBScript (and other, similar technologies), but it tends to always let you down at some
point, never getting you through that “last mile” to the finish line.

 Windows PowerShell is an express attempt on Microsoft’s part to do a better job,
and to get you through the last mile.

LIFE WITH POWERSHELL

The goal behind Windows PowerShell is that Microsoft builds 100 percent of a prod-
uct’s administrative functionality in the shell. They continue to build GUI consoles,
but those consoles are executing PowerShell commands behind the scenes. That
approach forces them to make sure that every possible thing that you can do with the
product is accessible through the shell. If you need to automate a repetitive task or
create a process that the GUI doesn’t enable well, you can drop into the shell and take
full control for yourself.

 A number of Microsoft products have already adopted this approach, including
Exchange Server 2007 and 2010, SharePoint Server 2010, many of the System Center
products, and many components of Windows itself. Going forward, more and more

products and Windows components will follow this pattern. That’s exactly why you

Download from Wow! eBook <www.wowebook.com>

3How to use this book

can’t afford to ignore PowerShell: over the next few years, it will become the basis for
more and more administration.

 Ask yourself a question: if you were in charge of a team of IT administrators (and
perhaps you are), which ones would you want in your senior, higher-paying positions?
The ones who need several minutes to click their way through a GUI each time they
need to perform a task, or the ones who can perform tasks in a few seconds after auto-
mating them? We already know the answer from almost every other part of the IT
world. Ask a Cisco administrator, or an AS/400 operator, or a Unix administrator. The
answer is: “I’d rather have the guy or gal who can run things more efficiently from the
command line.” Going forward, the Windows world will start to split into two groups:
administrators who can use PowerShell, and those who can’t. As I famously said at
Microsoft’s TechEd 2010 conference, your choice is “learn PowerShell, or would you
like fries with that?”

 I’m glad you’ve decided to learn PowerShell.

1.2 Is this book for you?
This book doesn’t try to be all things to all people. In fact, Microsoft’s PowerShell
team loosely defines three audiences who use PowerShell:

■ Administrators who primarily run commands and consume tools written by
others.

■ Administrators who combine commands and tools into more complex pro-
cesses, and perhaps package those as tools that less-experienced administrators
can utilize.

■ Administrators and developers who create reusable tools and applications.

This book is designed primarily for the first audience, and to a lesser degree the sec-
ond audience. I think it’s valuable for anyone, even a developer, to understand how
the shell is used to run commands. After all, if you’re going to create your own tools
and commands, you should know the patterns that the shell uses, so that you can
make tools and commands that work as well as they can within the shell.

 If you’re interested in creating scripts to automate complex processes, such as new
user provisioning, then you’ll absolutely see how to do that by the end of this book.
You’ll even see how to get started on creating your own commands that other adminis-
trators can use. This book won’t, however, plumb the depths of everything that Power-
Shell can possibly do. The goal here is to get you using the shell, and using it
effectively, in a production environment.

1.3 How to use this book
The idea behind this book is that you’ll read one chapter each day. You don’t have to
read it during lunch, but each chapter should only take you about 40 minutes or so to
read, giving you an extra 20 minutes to gobble down the rest of your sandwich and

practice what the chapter showed you.

Download from Wow! eBook <www.wowebook.com>

4 CHAPTER 1 Before you begin

THE MAIN CHAPTERS

Of the 28 chapters in this book, chapters 2 through 24 contain the main content, giv-
ing you 23 days’ worth of lunches to look forward to, meaning you can look forward to
completing the main content of the book in about a month. Try to stick with that
schedule as much as possible, and don’t feel the need to read extra chapters in a given
day. It’s actually more important that you spend some time practicing what each chap-
ter shows you, because using the shell will help cement what you’ve learned. Not every
single chapter will require a full hour, so sometimes you’ll be able to spend some addi-
tional time practicing (and eating lunch) before you have to get back to work.

HANDS-ON LABS

Most of the main content chapters include a short lab for you to complete. You’ll be
given instructions, and perhaps a hint or two, but you won’t find any answers in the
book. The answers are online, at MoreLunches.com, but try your best to complete
each lab without looking at the online answers.

SUPPLEMENTARY MATERIALS

The MoreLunches.com website also contains additional supplementary content,
including extra chapters, companion videos, and so forth. In fact, each chapter has at
least one companion video so that you can see what the chapter is describing, happen-
ing in an actual PowerShell window. The videos are only five minutes or so apiece, so
you should have time to watch them when you’re done reading the chapters.

IDEAS FOR ON YOUR OWN

Some chapters conclude with ideas for further exploration on your own. Again, try to
find some spare minutes each afternoon to tackle these short challenges, because
doing so will definitely improve your skill and comfort in the shell.

GOING FURTHER

The last four chapters in this book will help you take your newfound PowerShell skills
and put them to work, take them further, and keep them fresh. Those chapters might
not fit into a single hour, and they don’t come with labs, but they will get you started
on using PowerShell in the real world.

ABOVE AND BEYOND

As I learned PowerShell myself, there were often times when I wanted to go off on a
tangent and explore why something worked the way it did. I didn’t learn a lot of extra
practical skills that way, but I did gain a deeper understanding of what the shell is, and
how it works. I’ve included some of that tangential information throughout the book
in sections labeled “Above and beyond.” None of those will take you more than a cou-
ple of minutes or so to read, but if you’re the type of person who likes to know why
something works the way it does, they can provide some fun additional facts. If you
feel that those sections might distract you from the practical stuff, just ignore them on
your first read-through. You can always come back and explore them later when

you’ve mastered the chapter’s main material.

Download from Wow! eBook <www.wowebook.com>

5Setting up your lab environment

1.4 Setting up your lab environment
You’re going to be doing a lot of practicing in Windows PowerShell throughout this
book, and you’ll want to have a lab environment to work in—please, please, please
don’t practice in your company’s production environment!

 I suggest that you create a virtual machine to work in. Throughout this book, I’ll
assume that you’re running Windows Server 2008 R2, and that you’ve configured your
server to be the sole domain controller in the company.pri domain. If you choose to
use the virtual machine approach, you can use whatever virtual machine technology
you wish, whether it be VMWare, Microsoft, or something else. You can get a six-month
trial of Windows Server 2008 R2 at http://www.microsoft.com/windowsserver2008/
en/us/trial-software.aspx; you should install it in a virtual machine and promote it to
be a standalone domain controller. If you’re not comfortable getting a virtual
machine up and running, installing the ADDS role, or promoting a domain controller,
then this book probably isn’t for you. I assume that you’re comfortable with these
basic administrative tasks.

 If you’re not entirely comfortable installing a domain controller (I realize that it’s
a task you don’t do every single day), check out Netometer’s screencast tutorial of the
process on Windows Server 2008: http://mng.bz/S085.

 Here are a few pieces of information you’ll need:

■ The FQDN for your forest root domain should be company.pri.
■ The Windows NetBIOS name for your domain should be COMPANY.
■ You should set the forest functional level and domain functional level to the

highest levels available (which will either be Windows Server 2008 or Windows
Server 2008 R2).

■ For Additional Domain Controller Options, select only the option to install
DNS Server.

■ If you receive a warning about the computer having a dynamically assigned IP
address, select “Yes, the computer will use a dynamically assigned IP address.”
It’s okay that it isn’t recommended—this is just a test computer.

■ You may receive a warning about a delegation creation problem; just select Yes.
■ Accept the default filesystem paths.
■ Provide a Restore Mode password. I recommend something easy to remember,

such as P@ssw0rd.
■ When you see it, select the check box to Reboot on Completion.

Both the tutorial and the screencast assume that you’ve already installed the Active
Directory Domain Services role by using Server Manager, so you can do that as a first
step. Open Server Manager, tell it you want to add a role, and add the Domain Ser-
vices role. Once that finishes, you can begin the domain controller promotion
(Dcpromo) process outlined in the two tutorials.

 You can complete most of the tasks in this book by using Windows 7. But chapters 5

and 7, in particular, require a Windows Server 2008 R2 domain controller if you want

Download from Wow! eBook <www.wowebook.com>

http://www.microsoft.com/windowsserver2008/en/us/trial-software.aspx
http://www.microsoft.com/windowsserver2008/en/us/trial-software.aspx

6 CHAPTER 1 Before you begin

to follow along with my examples and complete the hands-on labs. Chapter 10 is defi-
nitely more interesting on a server than on a client operating system.

 Keep in mind that, throughout this book, I’m assuming that you will be working
on a Windows Server 2008 R2 system. That’s a 64-bit operating system, also referred to
as an “x64” operating system. As such, it comes with two copies of Windows Power-
Shell and the graphically oriented Windows PowerShell ISE. In the Start menu, the 64-
bit versions of these are listed as “Windows PowerShell” and “Windows PowerShell
ISE.” The 32-bit versions are identified by an “(x86)” in the shortcut name, and you’ll
also see “(x86)” in the window’s title bar when running those versions.

 The examples in this book are based on the 64-bit versions of PowerShell and the
ISE. If you’re not using those, you may sometimes get slightly different results than
mine when running examples. The 32-bit versions are primarily provided for back-
ward compatibility. For example, some shell extensions are only available in 32-bit fla-
vors and can only be loaded into the 32-bit (or “x86”) shell. Unless you need to use
such an extension, I recommend using the 64-bit shell when you’re on a 64-bit operat-
ing system.

1.5 Installing Windows PowerShell
Windows PowerShell v2 is available for all versions of Windows since Windows XP,
which includes Windows Server 2003, Windows Vista, Windows Server 2008, Windows
Server 2008 R2, and Windows 7. The shell is preinstalled on Win2008R2 and Win7
(and any later versions), and it must be manually installed on older versions.

 If you happen to be using an older version of PowerShell, visit http://download
.microsoft.com and enter “powershell 2” into the search box. Locate the correct
download for your version of Windows, and install it. If you’re not able to find the
right download, try http://support.microsoft.com/kb/968930—that should take you
to the Windows Management Framework Core package, which is what PowerShell v2
is distributed with. Again, be very careful to select the right version. “x86” refers to 32-
bit packages, and “x64” refers to 64-bit packages. You won’t see a download for Win-
dows 7 or Windows Server 2008 R2, because PowerShell comes preinstalled on those
versions of Windows.

 Note that PowerShell requires .NET Framework v2 at a minimum, and it prefers to
have the latest and greatest version of the framework that you can get. I recommend
installing at least .NET Framework v3.5 SP 1 to get the maximum functionality from
the shell.

 Note that Windows Server 2008 came with PowerShell v1, but it isn’t installed by
default. You can’t have both v1 and v2 installed side by side, so installing v2 will make
v1 inaccessible. If you have a product that absolutely requires v1 and won’t run under
v2, then you may want to hold off installing v2.

 Installing PowerShell v2 also installs some companion technologies, including the
Windows Remote Management (WinRM) service, which you’ll learn more about later in

this book. PowerShell is installed as a hotfix, which means that once it’s installed, it can

Download from Wow! eBook <www.wowebook.com>

http://download.microsoft.com
http://download.microsoft.com
http://support.microsoft.com/kb/968930

7Online resources

be a bit tricky to remove. Generally speaking, you won’t want to remove it. PowerShell
is officially a part of the core Windows operating system, and any bug fixes or updates
will come down as additional hotfixes, or even in service packs, just like any other com-
ponent of Windows.

 There are two components to PowerShell v2: the standard, text-based console host
(PowerShell.exe) and the more visual Integrated Scripting Environment (ISE; Power-
ShellISE.exe). The text-based console is what I use most of the time, but you’re wel-
come to use the ISE if you prefer. Note that the ISE isn’t preinstalled on server
operating systems, so if you want to use it, you’ll need to go into Windows Features
(using Server Manager) and manually add the ISE feature. It isn’t available at all on
the no-GUI Server Core installation.

 Before you go any further, take a few minutes to customize the shell. If you’re
using the text-based console host, I strongly recommend that you change the font it
uses to the Lucida fixed-width font instead of the default console font. The default
font makes it very difficult to distinguish some of the special punctuation characters
that PowerShell uses. Follow these steps to customize the font:

1 Click the control box (that’s the PowerShell icon in the upper-left of the con-
sole window) and select Properties from the menu.

2 In the dialog box that appears, browse through the various tabs to change the
font, window colors, window size and position, and so forth.

Your changes will apply to the default console, meaning they’ll stick around every
time you open a new window.

1.6 Online resources
I’ve mentioned the MoreLunches.com website a couple of times already, and I hope
you’ll find time to visit. A number of supplementary resources for this book are avail-
able there:

■ Companion videos for each chapter
■ Example answers for each end-of-chapter lab
■ Downloadable code listings (so you don’t have to type them in from the book)
■ Additional articles and bonus chapters
■ Links to my Windows PowerShell blog, which contains even more examples and

articles
■ Links to my Windows PowerShell Frequently Asked Questions (FAQ)
■ Links to discussion forums, where you can ask questions or submit feedback

about this book

I’m passionate about helping folks like you learn Windows PowerShell, and I try to
provide as many different resources as I can. I also appreciate your feedback, because
that helps me come up with ideas for new resources that I can add to the site, and ways

to improve future editions of this book. You can contact me through the links on

Download from Wow! eBook <www.wowebook.com>

8 CHAPTER 1 Before you begin

MoreLunches.com or on my company’s website, http://ConcentratedTech.com. You
can also find me on Twitter under @concentrateddon.

1.7 Being immediately effective with PowerShell
“Immediately effective” is a phrase that I’ve made my primary goal for this entire
book. As much as possible, I’ll try to have each chapter focus on something that you
could use in a real production environment, right away. That means I’ll sometimes
gloss over some details in the beginning, but when necessary I promise to circle back
and cover those details at the right time. In many cases, I had to choose between hit-
ting you with twenty pages of theory first, or diving right in and accomplishing some-
thing without explaining all the nuances, caveats, and details. When those choices
came along, I almost always chose to dive right in, with the goal of making you immedi-
ately effective. But all those important details and nuances will still be explained, just at
a different time in the book (or, for the really subtle details that don’t impact the
book’s content, I may explain them in an online article on MoreLunches.com).

 Okay, that’s enough background. It’s time to start being immediately effective.
Your first lunch lesson awaits.
Download from Wow! eBook <www.wowebook.com>

Running commands
Start looking at PowerShell examples on the internet, and it’s easy to get the
impression that PowerShell is some kind of .NET Framework–based scripting or
programming language. My fellow Microsoft Most Valuable Professional (MVP)
award recipients, and hundreds of other PowerShell users, are pretty serious geeks,
and we like to dig deep into the shell and see what we can make it do. But almost all
of us began right where this chapter starts: simply running commands. That’s what
we’ll be doing in this chapter: not scripting, not programming, but just running
commands and command-line utilities.

2.1 Not scripting: just running commands
PowerShell, as its name implies, is a shell. It’s similar to the Cmd.exe command-line
shell that you’ve probably used before, and it’s even similar to the good old MS-DOS
shell that shipped with the first PCs back in the 1980s. It even has a strong resem-
blance to the Unix shells, like Bash, from the late ’80s, or even the original Unix
Bourne shell, introduced in the late ’70s. PowerShell is much more modern, of
course, but in the end, PowerShell isn’t a scripting language like VBScript or KiXtart.
With those languages, as with most programming languages, you sit down in front of
a text editor (even if it’s Windows Notepad) and type a series of keywords to form a
script. You save that file, and perhaps double-click it to test it. PowerShell can work
like that, but that’s not necessarily the main usage pattern for PowerShell, especially
when you’re getting started. With PowerShell, you type a command, add a few
parameters to customize the command’s behavior, hit Return, and immediately see
your results.
9

Download from Wow! eBook <www.wowebook.com>

10 CHAPTER 2 Running commands

 Eventually, you’ll get tired of typing the same command (and its parameters) over
and over again, so you’ll copy and paste it all into a text file. Give that file a .PS1 file-
name extension, and you suddenly have a “PowerShell script.” Now, instead of typing
the command over and over, you just run that script, and it executes whatever com-
mands are inside. This is the same pattern that you may have used with batch files in
the Cmd.exe shell, but it’s typically far less complex than scripting or programming.

 Don’t get me wrong: you can get as complex as you need to with PowerShell. In
fact, it supports the same kind of usage patterns as VBScript and other scripting or
programming languages. PowerShell gives you access to the full underlying power of
the .NET Framework, and I’ve seen PowerShell “scripts” that were practically indistin-
guishable from a C# program written in Visual Studio. PowerShell supports these dif-
ferent usage patterns because it’s intended to be useful to a wide range of audiences,
as I described in the previous chapter. The point is that just because it supports that
level of complexity doesn’t mean you have to use it at that level, and it doesn’t mean
you can’t be extremely effective with less complexity.

 Here’s an analogy: You probably drive a car. If you’re like me, changing the oil is
the most complex mechanical task you’ll ever do with your car. I’m not a car geek, and
I can’t rebuild the engine. I also can’t do those cool high-speed J-turns that you see in
the movies, and you’ll never see me driving a car on a “closed course” in a car com-
mercial. But the fact that I’m not a professional stunt driver doesn’t stop me from
being an extremely effective driver at a less complex level. Someday I might decide to
take up stunt driving for a hobby (I’m sure my insurance company will be thrilled),
and at that point I’ll need to learn a bit more about how my car works, master some
new skills, and so on. That option is always there for me to grow into. But for now, I’m
very happy with what I can accomplish as a normal driver.

 For now, we’re going to stick with being normal “PowerShell drivers,” operating
the shell at a lower level of complexity. Believe it or not, we’re the primary target audi-
ence for PowerShell, so you’ll find that there’s an awful lot of incredible stuff that you
can do. You just need to master the ability to run commands within the shell, and
you’re on your way.

2.2 Opening PowerShell
This is a good time to get PowerShell up and running, if you haven’t done so already.
You can use either the ISE or the regular console host. You’ll find the icons for Power-
Shell and the ISE located on the Start menu, under Accessories.

 It’s very important that you run PowerShell as an Administrator. On Windows Vista
and later versions of Windows, User Account Control (UAC) is enabled by default, and
it prevents you from running programs as Administrator without taking a special step:
right-click the program icon in the Start menu, and select Run as Administrator from
the context menu. You need to do that every time you open the application. You can
also right-click the icon, select Properties, and modify the program’s properties to
Download from Wow! eBook <www.wowebook.com>

11Opening PowerShell

always run as Administrator. I find that to be more convenient, because from then on
I can just click the icon in the Start menu to open the shell.

 Why do you have to start the shell this way? Because although Windows PowerShell
is constrained by UAC, I like to say that is doesn’t participate in UAC. That is, if you try
to perform a privileged operation in a non-elevated shell, you will get an “Access
Denied” error message. You won’t get the friendly UAC pop-up dialog box that asks
you if you want to perform the operation. PowerShell isn’t capable of elevating its pri-
vilege on the fly, so you have to do so each time you open a shell window.

TRY IT NOW Get PowerShell, or the ISE, up and running as Administrator.

If you choose to use the ISE, you’ll find yourself looking at three panes within the win-
dow, as shown in figure 2.1 (I’ve rearranged them from the default to make them a bit
easier to see and describe). The only two of these you need to care about for now are
the command input pane and the output pane—you can ignore the script editor pane
(shown on the right). Consider arranging the panes so that only those two are show-
ing—you’ll find buttons on the right side of the toolbar that let you reconfigure the
panes, and the panes themselves can be resized by dragging the separator between
them. Experiment with the pane arrangement until you’re happy with it.
Figure 2.1 The ISE defaults to a three-pane layout including command input, output, and script editing.

Download from Wow! eBook <www.wowebook.com>

12 CHAPTER 2 Running commands

2.3 Managing files and folders—you know this!
Let’s start with something that you probably already know how to do: manage files and
folders from the command line. Forget about PowerShell for a few minutes, and think
about your existing command-line experience (if you don’t have any, that’s
okay—you’ll pick it up pretty quickly). How would you get a listing of files and folders
from the current folder?

Dir

Right? Try the same command in Windows PowerShell and you’ll find that it does the
same thing, although the output might look a little different than it does in Cmd.exe.

TRY IT NOW Try running Dir from within PowerShell, right now. I’d like you
to get into the habit of trying what you’re reading about, so that you can start
getting your hands-on time with the shell as soon as possible.

Take a few minutes and see if you can remember the commands needed to use
Cmd.exe to accomplish these tasks listed in table 2.1.

TRY IT NOW Try running some of those same commands in PowerShell, and
you should find that they all work more or less the same way that you’re used
to. You should have come up with the commands shown in table 2.2.

Table 2.1 What commands would you use to complete these tasks in Cmd.exe?

Task Cmd.exe command

Copy a file to a different location

Change directories

Move a file to a new location

Rename an existing file

Create a new directory

Remove an empty directory

Delete a file

Display the contents of a text file

Table 2.2 Old-style commands for file and folder management

Task Cmd.exe command

Copy a file to a different location Copy

Change directories Cd

Move a file to a new location Move

Rename an existing file Ren
Download from Wow! eBook <www.wowebook.com>

13Accuracy counts

If you have some Unix or Linux shell experience, you may have come up with some
alternatives, such as Ls for Dir, Cp for Copy, Rm instead of Del, or Cat rather than Type.
Those are fine answers, and you’ll find that they all work within PowerShell, too.

 At least, they mostly work. If you tried using extra parameters with some of these
commands, you will have realized that these aren’t quite the same commands that
you’re used to. For example, if you tried to run Dir /s to get a listing of files and fold-
ers, including subdirectories, then you probably got an error message. That’s okay—it
turns out that this isn’t exactly the same Dir command you know and love, but it has
the same capabilities. We’ll cover that a little later in this chapter.

TRY IT NOW Try running dir /s in Windows PowerShell just to confirm that
it doesn’t work. Don’t take my word for it!

Have you ever piped a long directory listing to more, in order to get a paged result?
That same trick still works: Dir | More.

TRY IT NOW Change into a long directory, like \Windows\System32, and try
running Dir | More. You can press Ctrl-C within PowerShell to stop the com-
mand from running once you’ve had enough.

A lot of administrators use the angle bracket to perform redirection. For example, dir
> file.txt will redirect the output of the Dir command into the text file File.txt. You
can use the same technique in PowerShell. You can even do the double-angle trick,
where the content will be appended to the specified file: Dir >> file.txt.

TRY IT NOW Go on—see if you can get a directory listing into a file using this
technique, and then append a second directory listing to the end of the
same file.

That’s the big part of this chapter: you can run commands, and many of the same
commands that you’ve used in Cmd.exe exist, although they may work a bit differ-
ently. That leaves us with most of an hour to kill, so let’s dig a little deeper.

2.4 Accuracy counts
PowerShell is incredibly picky about how you type commands. Command names

Create a new directory MkDir

Remove an empty directory RmDir

Delete a file Del

Display the contents of a text file Type

Table 2.2 Old-style commands for file and folder management (continued)

Task Cmd.exe command
never contain spaces; it’s always Dir and never Di r. You must have a space after the

Download from Wow! eBook <www.wowebook.com>

14 CHAPTER 2 Running commands

command name, so that PowerShell knows that the command name is done, and that
whatever comes next is a parameter or value.

 Technically, Cd.. is incorrect because it doesn’t include a space, and Cd .. is cor-
rect. In reality, PowerShell v2 catches the Cd.. error and will do the right thing (move
up one level in the directory hierarchy) because that’s such a commonly typed com-
mand, but that’s the only exception that PowerShell will catch that way for you. It
won’t catch something like Dir.. so it pays to be careful with those spaces.

Dir >> file.txt will redirect a directory to a file; Dir>>file.txt will generate an
error because the shell will think you’ve typed a single command name, not two com-
mands connected by angle brackets.

 I can’t stress enough how important it is to become a neat, careful typist when
you’re using PowerShell.

2.5 Not just files and folders: introducing PSDrives
You know what has always bugged me about Windows? I’ve spent years memorizing all
of these non-intuitive commands, like Dir and Cd, and they’re only good in one place:
the filesystem.

 The filesystem is a hierarchical database—you probably don’t think of the file-
system as a database, but it definitely is. Windows contains lots of other hierarchical
databases—the registry comes to mind, as does Active Directory, and there are
others—so why can’t I use the same commands to manage those databases? Why can’t
I do any of these:

1 Run cd hkcu: to change to the HKEY_CURRENT_USER registry hive.
2 Run dir to get a list of keys in that hive.
3 Run cd software to change to the Software key.
4 Run dir to get a list of subkeys.

It turns out that in PowerShell you can do exactly that.

TRY IT NOW Go ahead and try it—run those commands in that order and see
if they work for you.

It works because of a PowerShell feature called PSDrives (folks usually pronounce
that as “Pee-Ess Drives,” but it stands for PowerShell Drives). A PSDrive is a mapping
between the shell and some kind of data store—the filesystem, the registry, or even
Active Directory. As shown in figure 2.2, a PSDrive provider sits between the shell and
that storage system, making the storage system appear to be a disk drive within the
shell.

PSDrive providers can be added into the shell, so that the shell can learn to see
other forms of storage. For example, if you install the SQL Server 2008 administrative
tools on your computer, you’ll gain the ability to map a SQL: drive to SQL Server data-
bases. It’s pretty cool, and you can use most of the same commands—Dir, Cd, and so

forth—within any PSDrive that you map.

Download from Wow! eBook <www.wowebook.com>

15Not just files and folders: introducing PSDrives

 There are a few fun facts about PSDrives that you should keep in mind:

■ The shell always starts with the same PSDrives mapped. You can run the com-
mand Get-PSDrive to see them. You’ll see one for the HKEY_CURRENT_USER
(HKCU) and HKEY_LOCAL_MACHINE (HKLM) registry hives, one for each local
disk, one for environment variables, and one each for PowerShell’s function,
variable, and alias storage (which we’re not going to talk about right now).

■ You can map new drives by using the New-PSDrive command. Don’t bother
doing so now, because it’s something you’ll practice a bit later. Keep in mind
that these are PowerShell drives, so you won’t see them in Explorer. They only
exist within the shell, and whatever you map will unmap automatically when
you close the shell. You’ll learn how to overcome that shortcoming near the end
of the book.

■ Unlike the old MS-DOS–style drive names that were limited to a single letter,
PSDrives can have longer names, such as HKCU: and HKLM:. So when you map
drives, take the opportunity to make their names more meaningful, like DEMO:
or USER: or FILES: rather than X:, Y:, and Z:.

■ If you decide to map a new drive using New-PSDrive, you’ll have to specify a name
for the drive (without the colon—it’ll just be DEMO or USER or FILES or what-
ever), the PSDrive provider that will handle the mapping (such as FileSystem),
and the source for the mapping (which might be a UNC). For example,

New-PSDrive -name DEMO -psprovider FileSystem -root
\\Server\Share\Folder

TRY IT NOW One thing I found confusing at first was when I was supposed to
add the colon and when I shouldn’t. Try running cd hklm and see what hap-
pens; then run cd hklm: and see the difference. Whenever you’re referring
to a drive as part of an action—like changing to it—you’ll add the colon to
the end of the drive’s name.

Spend a few minutes familiarizing yourself with the various default PSDrives. Remem-
ber, you can switch to any one of them by using Cd and the drive name, such as Cd

PSDrive
providers

Storage
systems

FileSystem Registry Etc.

PowerShell

?HKLMHKCUD:C:

Figure 2.2 PSDrive providers
adapt different forms of storage
so they look like disk drives
within PowerShell
Env: or Cd C:. Make sure you can get a directory listing in a variety of drives, and

Download from Wow! eBook <www.wowebook.com>

16 CHAPTER 2 Running commands

spend a few minutes poking around the Variable: and Env: drives to see what infor-
mation you find.

PSDrives demonstrate an important design concept behind PowerShell itself: it
enables you to leverage existing skills in as many places as possible. For example, rather
than learning a whole new set of commands for manipulating the registry, you can use
the same commands that you already know from the filesystem. Leveraging existing
skills makes you more productive and more effective with less of a learning curve.

2.6 Support for external commands
So far, all of the commands you’ve run in the shell (at least, the ones I’ve suggested that
you run) have been built-in commands, which Windows PowerShell calls cmdlets (pro-
nounced “command-lets”). More than 200 of those cmdlets come built into Power-
Shell, and you can add more—products like Exchange Server, SharePoint Server, and
SQL Server all come with add-ins that each include hundreds of additional cmdlets.

 But you’re not limited to the cmdlets that come with PowerShell—you can also use
the same external command-line utilities that you have probably been using for years,
including Ping, Nslookup, Ipconfig, Net, and so forth. Because these aren’t native
PowerShell cmdlets, you use them the same way that you always have. PowerShell will
launch Cmd.exe behind the scenes, because it knows how to run those external com-
mands, and any results will be displayed within the PowerShell window. Go ahead and
try a few old favorites right now. For example, I’m often asked how you can use Power-
Shell to map a regular network drive—one that can be seen from within Explorer. I
always use Net Use, myself, and it works fine within PowerShell.

TRY IT NOW Try running some external command-line utilities that you’ve
used before. Do they work the same? Do any of them fail?

The Net Use example illustrates a really important lesson: with PowerShell, Microsoft
(perhaps for the first time ever) isn’t saying, “you have to start over and learn every-
thing from scratch.” Instead, Microsoft is saying, “if you already know how to do some-
thing, keep doing it that way. We’ll try to provide you with better and more complete
tools going forward, but what you already know will still work.” One reason there’s no
“Map-Drive” command within PowerShell is that Net Use already does a good job, so
why not keep using it?

 There are certainly instances where Microsoft has provided better tools than some
of the existing, older ones. For example, the native Test-Connection cmdlet provides
more options and more flexible output than the old, external Ping command—but if
you know how to use Ping, and it’s meeting whatever need you have, then go right on
using it. It will work fine from within PowerShell.

 All that said, I do have to deliver a harsh truth: not every single external command
will work flawlessly from within PowerShell, at least not without a little tweaking on

your part. That’s because PowerShell’s parser—the bit of the shell that reads what

Download from Wow! eBook <www.wowebook.com>

17The same old commands—almost

you’ve typed and tries to figure out what you want the shell to do—doesn’t always
guess correctly. Sometimes, you’ll type an external command and PowerShell will
mess up, start spitting out errors, and just generally not work.

 For example, things can get tricky when an external command has a lot of para-
meters—that’s where I see PowerShell break the most. We’re not going to dive into
the details of why it works, but here’s a way to run a command that will ensure its para-
meters work properly:

$exe = "C:\Vmware\vcbMounter.exe"
$host = "server"
$user = "joe"
$password = "password"
$machine = "somepc"
$location = "somelocation"
$backupType = "incremental"

& $exe -h $host -u $user -p $password -s "name:$machine" -r $location -t
$backupType

This supposes that you have an external command named vcbMounter.exe (which is a
real-life command-line utility supplied with some of VMWare’s virtualization prod-
ucts). It accepts several parameters:

■ -h for the host name
■ -u for the user name
■ -p for the password
■ -s for the server name
■ -r for a location
■ -t for a backup type

What I’ve done is put all the various elements—the executable path and name, as well
as all of the parameter values—into placeholders, which start with the $ character.
That forces PowerShell to treat those values as single units, rather than trying to parse
them to see if any of them contain commands or special characters or anything. Then
I used the invocation operator, passing it the executable name, all of the parameters,
and the parameters’ values. That pattern will work for almost any command-line util-
ity that’s being grumpy about running within PowerShell.

2.7 The same old commands—almost
Let’s put external commands on the back burner for a moment and get back to the
native commands. After all, those are the really interesting ones because they’re the
ones that make PowerShell more than just a copy of Cmd.exe.

 At the beginning of this chapter, you saw how commands like Dir, Cd, Type, and so
forth all worked within PowerShell. You also saw how they didn’t necessarily work
exactly the same—running Dir /s, for example, causes an error. Why is that?
Download from Wow! eBook <www.wowebook.com>

18 CHAPTER 2 Running commands

 The truth is that PowerShell doesn’t actually contain a Dir command, or a Type
command, or any of those other commands. Instead, PowerShell defines those as
aliases to some of PowerShell’s native cmdlets. Aliases are just nicknames for cmdlet
names. These are some of the real cmdlet names you’ve been using:

■ Get-ChildItem (for Dir, Ls)
■ Set-Location (for Cd)
■ Move-Item (for Move)
■ Rename-Item (for Ren)
■ Remove-Item (for Del, Rm, RmDir)
■ Copy-Item (for Copy, Cp)
■ Get-Content (for Type, Cat)
■ New-Item (for MkDir)

Those cmdlet names are obviously longer, making them harder to type, so Microsoft
added those aliases as a way of saving your fingers some wear and tear. Also, by select-
ing aliases that match the old Cmd.exe-style names (as well as Linux and Unix
names), the company gave you a way of jumping right into PowerShell and perform-
ing basic tasks without having to spend too much up-front time learning new com-
mand names.

 That explains why Dir /s doesn’t work: you’re not running the Dir command
from your past, and Get-ChildItem doesn’t support a /s parameter. Get-ChildItem
can do the same thing as Dir /s, but you’ll have to learn a new parameter name,
which is -recurse.

 In fact, this is probably a good time to point out some common characteristics
about PowerShell cmdlets:

■ All PowerShell cmdlet names have a strict naming convention. Cmdlet names
start with a verb, like Get or Copy, followed by a hyphen, and then a singular
noun, such as Item or Content. The list of allowed verbs is quite small—a few
dozen or so—and the number of verbs you use on a daily basis will probably
number less than a dozen. The idea is that you’ll gradually become used to
those verbs and be able to guess new cmdlet names. More on that in a second.

■ Cmdlet names tend to be a little generic. Why Move-Item and not Move-File?
Keep in mind that the cmdlet has to operate in the registry, environment vari-
ables, and other storage systems, as well as the filesystem. Rather than having
separate Move-File and Move-RegistryKey cmdlets, PowerShell has a single
generic Move-Item.

■ Parameter names (-recurse was one example) always start with a dash, and for
parameters that accept a value (like the -name DEMO example I showed you ear-
lier), there’s always a space separating the parameter name and the value. Dash,

name, space, value. When I teach classes, I make my students repeat that aloud:

Download from Wow! eBook <www.wowebook.com>

19The same old commands—almost

dash, name, space, value. After that, they never wonder if parameter names
should start with a dash or a slash, or if there’s supposed to be an equal sign or
colon in between the name and value. It’s “dash, name, space, value,” and never
anything else.

■ Parameter names are used consistently throughout the shell. If one cmdlet has
a -computerName parameter, which is used for specifying a computer name,
then most cmdlets that need a computer name will also have a -computerName
parameter.

■ Both parameter and cmdlet names are intended to be clear and meaningful.
When you look at a cmdlet name like Get-Content, you should be pretty clear
that it’s getting some kind of content from something. A parameter name like
-credential doesn’t leave much to the imagination, either—you should be
pretty certain what that parameter is going to do.

■ Because “clear” can sometimes mean “lengthy,” Microsoft gives you shortcuts
for cmdlet names and parameter names, to save you some typing. Cmdlet
names can be given shorter aliases, as we’ve already discussed, and parameter
names don’t need to be typed in their entirety. For example, if -recurse is the
only parameter of Get-ChildItem that starts with the letter r, then you only
have to type -r and PowerShell will know what you mean. If a cmdlet has both
a -computerName and -credential parameter, typing -comp will probably be
enough for PowerShell to figure out that you mean the -computerName para-
meter.

This is another good place for me to remind you to be a neat, careful typist. Get-
ChildItem-recurse is incorrect, because there’s no space between the end of the
cmdlet name and the dash that starts the parameter name. Get-ChildItem -recurse
is correct, with that space in between the two elements. It’s very, very important that
you focus on those little typing details, because getting them wrong will generate
sometimes-confusing errors that will do nothing but slow you down.

 PowerShell is all about consistency. That’s not to say it’s 100 percent consistent,
because it is, after all, the product of many human beings, who do tend to make mis-
takes sometimes. But it’s pretty consistent most of the time. In the previous chapter, I
wrote about how graphical user interfaces (GUIs) offer features to help you figure out
what you can do with them: right-click menus, tooltips, menus, and so forth. Program-
mers refer to those features as discoverability features, because they literally help you dis-
cover the tool’s capabilities. A command-line interface (CLI) like PowerShell lacks
those kinds of graphical discoverability features, but consistency can provide a kind of
discoverability of its own.

 For example, let’s say I told you that the cmdlet verb Get was used for all cmdlets that
retrieve or display something (as with Get-Content). You already know that cmdlet
Download from Wow! eBook <www.wowebook.com>

20 CHAPTER 2 Running commands

nouns are singular, and never plural. Can you guess the names of the cmdlets that
would perform the tasks in table 2.3?

All of those tasks can be accomplished with one of two verbs: Get or New. From there,
you just have to make an educated guess about the noun. The right answers are shown
in table 2.4.

The last two cmdlets in table 2.4 aren’t native to PowerShell, and you won’t be able to
try them unless you have the Exchange Server 2007 (or 2010) add-in loaded, which
isn’t something we’re going to cover just now. The point for right now is guessing the
right cmdlet name—if you were able to do that, then you’re well on your way to mas-
tering the shell.

 More importantly, don’t ever be afraid to guess a cmdlet name, and don’t be afraid
to be wrong. In the next chapter, I’ll show you how to check and see if your guesses
are correct, and how to teach yourself how to use a cmdlet once you’ve discovered its
name. I’ll also show you how to search for cmdlets based on a part of their name,
which can be another useful trick for discovering new cmdlets.

Table 2.3 Guessing the cmdlet names for specific tasks

Task Cmdlet

Display a list of services

Display a list of running processes

Display the contents of an event log

Create a new service

Retrieve Exchange mailboxes

Create a new Exchange mailbox

Table 2.4 Introducing some new cmdlets

Task Cmdlet

Display a list of services Get-Service

Display a list of running processes Get-Process

Display the contents of an event log Get-EventLog

Create a new service New-Service

Retrieve Exchange mailboxes Get-Mailbox

Create a new Exchange mailbox New-Mailbox
Download from Wow! eBook <www.wowebook.com>

21Lab

2.8 Common points of confusion
Whenever it seems appropriate, I’ll wrap up each chapter with a brief section that cov-
ers some of the common mistakes I see when I teach classes. The idea is to help you
see what most often confuses other administrators like yourself, and to avoid those
problems—or at least to be able to find a solution for them—as you start working with
the shell.

2.8.1 Typing cmdlet names

First up is the typing of cmdlet names. It’s always Verb-Noun, like Get-Content. All of
these are things I see newcomers try, but they won’t work:

■ Get Content
■ GetContent
■ Get=Content
■ Get_Content

2.8.2 Typing parameters

Parameters are also consistently written. A parameter that takes no value, such as
-recurse, just gets a dash before its name. There need to be spaces separating the
cmdlet name from its parameters, and the parameters from each other. These are all
correct:

■ Dir -rec (the shortened parameter name is fine)
■ New-PSDrive -name DEMO -psprovider FileSystem -root \\Server\Share

But these examples are all incorrect:

■ Dir-rec (no space between alias and parameter)
■ New-PSDrive -nameDEMO (no space between parameter name and value)
■ New-PSDrive -name DEMO-psprovider FileSystem (no space between the first

parameter’s value and the second parameter’s name)

PowerShell isn’t normally picky about upper- and lowercase, meaning that dir and
DIR are the same, as are -RECURSE and -recurse and -Recurse. But the shell sure is
picky about those spaces and dashes!

2.9 Lab
Because this is the book’s first lab, I’ll take a moment and describe how these are sup-
posed to work. For each lab, I’ll give you a few tasks that you can try and complete on
your own. Sometimes I’ll provide a hint or two to get you going in the right direction.
From there, you’re on your own.

 I absolutely guarantee that everything you need to know to complete every lab is

either in that same chapter or was covered in a previous chapter (and the “previously

Download from Wow! eBook <www.wowebook.com>

22 CHAPTER 2 Running commands

covered” info is the stuff I’m most likely going to give you a hint for). I’m not saying
the answer is going to be right out in plain sight: most often, a chapter will have
taught you how to discover something on your own, and you’ll have to go through
that discovery process to find the answer. It might seem frustrating, but forcing your-
self to do it will absolutely make you more successful with PowerShell in the long run.
I promise.

 Keep in mind that you can find sample answers at MoreLunches.com. My answers
might not exactly match yours, and that will become increasingly true as we move on
to more complex material. In fact, you’ll often find that PowerShell offers a half-
dozen ways to accomplish almost anything. I’ll show you the way I use the most, but if
you come up with something different, you’re not wrong! Any way that gets the job
done is correct.

 Using just what you learned in this chapter, complete the following tasks in Win-
dows PowerShell:

1 Create a text file that contains the names of the files and folders in C:\Windows
(don’t worry about including subdirectories—that would take too long). Name
the text file MyDir.txt.

2 Display the contents of that text file.
3 Rename the file from MyDir.txt to WindowsDir.txt.
4 Create a new folder named LabOutput—you can either do this in your Docu-

ments folder, or in the root of your C: drive.
5 Copy WindowsDir.txt into the LabOutput folder.
6 Delete the original copy of WindowsDir.txt—not the copy that you just made in

LabOutput.
7 Display a list of running processes.
8 Redirect a list of running processes into a file named Procs.txt.
9 Move Procs.txt into the LabOutput folder if it isn’t in there already.

10 Display the contents of Procs.txt so that only one page displays at a time
(remember the trick with | more).

Hopefully these tasks seem straightforward for you. If so—excellent! You were leverag-
ing your existing command-line skills to make PowerShell perform a few practical
tasks for you. If you’re new to the command-line world, these tasks are a good intro-
duction to what you’ll be doing in the rest of this book.

 I’m not going to hit you with any “Ideas for on your own” in this chapter. Because
we’re just beginning, I’ll be happy with the tasks you’ve already completed. If you
didn’t get a chance to try all of the “Try it Now” examples in this chapter, go back and
do so now if you have time, and make sure that you’re able to accomplish all ten of the
preceding lab tasks.
Download from Wow! eBook <www.wowebook.com>

Using the help system
In the first chapter of this book, I mentioned that discoverability is a key feature
that makes graphical user interfaces (GUIs) easier to learn and use, and that com-
mand-line interfaces (CLIs) like PowerShell are often more difficult because they
lack those discoverability features. In fact, PowerShell has fantastic discoverability
features—they’re just not that obvious. One of the main discoverability features is
the help system.

3.1 The help system: how you discover commands
Bear with me for a minute while I climb up on a soapbox and preach to you.

 We work in an industry that doesn’t place a lot of emphasis on reading,
although we do have an acronym, RTFM, that we cleverly pass along to users when
we wish they would “read the friendly manual.” Most administrators tend to dive
right in, relying on things like tooltips, context menus, and so forth—those GUI dis-
coverability tools—to figure out how to do something. I know that’s how I often
work, and I imagine you do the same thing. Let me be clear about one thing:

If you aren’t willing to read PowerShell’s help files, you won’t be effective with Power-
Shell. You won’t learn how to use it, you won’t learn how to administer products like
Windows and Exchange with it, and you might as well stick with the GUI.

That’s about as clear as I can be. It’s a very blunt statement, I know, but it’s abso-
lutely true. Imagine trying to figure out Active Directory Users and Computers, or
any other administrative console, without the help of tooltips, menus, and context
menus! Trying to learn and use PowerShell without taking the time to read and
23

Download from Wow! eBook <www.wowebook.com>

24 CHAPTER 3 Using the help system

understand the help files is the same thing. It’ll be frustrating, confusing, and ineffec-
tive. Why?

■ If you need to perform a task and don’t know what command to use, the help sys-
tem is how you’ll find that command. Not Google or Bing, but the help system.

■ If you run a command and get an error, the help system is what will show you
how to properly run the command so that you don’t get errors.

■ If you want to link multiple commands together to perform some complex task,
the help system is what will show you how each command is able to connect to
others. You don’t need to search for examples on Google or Bing; you need to
learn how to use the commands themselves, so that you can create your own
examples and solutions.

I know, this preaching of mine is a little heavy-handed. The problem is that 90 percent
of the problems I see students struggling with in classes, and on the job, could be
solved if those folks took a few minutes to sit back, breathe deeply, and read the help.
Of course, you need to understand what you’re reading, and that’s what this chapter is
all about.

 From here on out, this book is going to do a couple of things to help encourage
you to read the help:

■ Although I will be showing you many commands in my examples, I will almost
never expose the complete functionality, options, and capabilities of each com-
mand. You should read the help for each and every command I show you, so
that you’ll be familiar with the additional things that command can do.

■ In the labs, I may give you a hint about which command to use for a task, but I
won’t give you hints about the syntax. You’ll need to use the help system to dis-
cover that syntax on your own in order to complete the labs.

■ I’ll often ask you to identify new commands or parameters as part of the labs
and “Ideas for on your own” sections. The ideas is for you to practice using the
help system itself, because the more proficient you are with the help system, the
more proficient you’ll be with the shell.

I absolutely promise you that mastering the help system is the secret recipe for becom-
ing a PowerShell expert. No, you won’t find every little detail in there, and there’s a
lot of super-advanced stuff that isn’t documented in the help system, but in terms of
being an effective day-to-day administrator, the help system is the key. This book will
make that system understandable, and it will teach you the concepts that the help
skips over, but it will only do so in conjunction with the built-in help.

 Stepping off my soapbox now.

3.2 Asking for help
Windows PowerShell provides a cmdlet, Get-Help, that accesses the help system. You
may see examples of people using the Help keyword instead, or even the Man keyword

(which comes from Unix and means “Manual”). Man and Help aren’t aliases at

Download from Wow! eBook <www.wowebook.com>

25Using help to find commands

all—they are functions, which are basically wrappers around the core Get-Help cmdlet.
Help works much like the base Get-Help, but it pipes the help output to More so that
you get a nice paged view instead of seeing all the help fly by at once. Running Help
Get-Content and Get-Help Get-Content produces the same results, but the first one
has a page-at-a-time display. You could run Get-Help Get-Content | More to produce
that same paged display, but it’s a lot more typing. I’ll typically just use Help, but I want
you to understand that there’s some trickery going on under the hood.

 By the way, sometimes that paginated display gets annoying—you’ve got the infor-
mation you need, but it still wants you to hit the spacebar to display the remaining
information. If that’s ever the case, press Ctrl-C to cancel the command and return to
the shell prompt. Within the shell’s console window, Ctrl-C always means “break”
rather than “copy to the clipboard.” In the more graphically oriented Windows Power-
Shell ISE, however, Ctrl-C does in fact copy to the clipboard. There’s a red “stop” but-
ton in the toolbar that will stop a running command.

 The help system has two main goals: to help you find commands to perform specific
tasks, and to help you learn how to use those commands once you’ve found them.

3.3 Using help to find commands
Technically speaking, the help system has no idea what commands are present in the
shell. All it knows is what help topics are available. Fortunately, Microsoft ships a help
topic for nearly every cmdlet that they produce, so there’s usually no difference. In
addition, the help system can also access information that isn’t related to a specific
cmdlet, including background concepts and other general information.

 Like most commands, Get-Help (and therefore Help) has several parameters. One
of those—perhaps the most important one—is -Name. It’s a positional parameter, so
you don’t have to type -Name and can simply provide the name you’re looking for.
This parameter specifies the name of the help topic you’d like to access, and it accepts
wildcards. This ability to handle wildcards is what makes the help system useful for dis-
covering commands.

 For example, suppose I want to do something with an event log. I don’t know what
commands might be available, so I want to search and see what help topics talk about
event logs. I might run either of these two commands:

Help *log*
Help *event*

The first of those commands returns a list like this on my computer:

Name

Get-EventLog
Clear-EventLog
Write-EventLog
Limit-EventLog
Show-EventLog

New-EventLog
Remove-EventLog

Download from Wow! eBook <www.wowebook.com>

26 CHAPTER 3 Using the help system

about_eventlogs
about_logical_operators

Most of those seem to have something to do with event logs, and based on the Verb-
Noun naming format, all but the last two appear to be help topics related to specific
cmdlets. The last two “about” topics provide background information. The last one
doesn’t seem to have anything to do with event logs, but it came up because it does have
“log” in it—part of the word “logical.” Whenever possible, I try to search using the
broadest term possible—“*event*” or “*log*” as opposed to “*eventlog*”—because I’ll
get the most results possible.

 Once you have a cmdlet that you think will do the job—Get-EventLog looks like a
good candidate for what I’m after right now—you can ask for help on that specific
help topic:

Help Get-EventLog

Here’s another cool trick that PowerShell offers: tab completion. This enables you to
type a portion of a command name, and then press Tab. The shell will complete what
you’ve typed with the closest match; you can continue pressing Tab to cycle through
alternative matches.

TRY IT NOW Type Help Get-Ev and press Tab. My first match is Get-Event,
which isn’t what I want; pressing Tab again brings up Get-EventLog, which is
what I’m after. I can hit Return to accept the command and display the help
for that cmdlet.

You can continue to use wildcards. If PowerShell only finds one match to whatever
you’ve typed, it won’t display a list of topics with just that one item. Instead, it will dis-
play the contents for that item.

TRY IT NOW Run Help Get-EventL* and you should see the help file for Get-
EventLog, rather than a list of matching help topics.

If you’ve been following along in the shell, you should now be looking at the help file
for Get-EventLog. This is called the summary help, and it’s meant to be a short descrip-
tion of the command and a reminder of the syntax. This is useful when you need to
quickly refresh your memory on a command’s usage, and it’s where we’ll begin inter-
preting the help file itself.

Above and beyond

Sometimes, I’ll need to share a little bit of information that, although nice, isn’t es-
sential to your understanding of the shell. I’ll put that information into an “Above and
beyond” section, like this one. If you skip these, you’ll be fine; if you read them, you’ll
often learn about an alternative way to do something, or get a bit of additional insight
into PowerShell.
Download from Wow! eBook <www.wowebook.com>

27Interpreting the help

3.4 Interpreting the help
PowerShell’s cmdlet help files have a particular set of conventions. Learning to under-
stand what you’re looking at is the key to extracting the maximum amount of informa-
tion from these files, and to learning to use the cmdlets themselves more effectively.

3.4.1 Parameter sets and common parameters

Most commands can work in a variety of different ways, depending on what you need
them to do. For example, here’s the syntax section for the Get-EventLog help:

SYNTAX
 Get-EventLog [-AsString] [-ComputerName <string[]>] [-List] [<Com
 monParameters>]

 Get-EventLog [-LogName] <string> [[-InstanceId] <Int64[]>] [-Afte
 r <DateTime>] [-AsBaseObject] [-Before <DateTime>] [-ComputerName
 <string[]>] [-EntryType <string[]>] [-Index <Int32[]>] [-Message
 <string>] [-Newest <int>] [-Source <string[]>] [-UserName <strin
 g[]>] [<CommonParameters>]

Notice that the command is listed twice. That indicates that the command supports
two parameter sets , there are two distinct ways in which you can use this command.
Some of the parameters will be shared between the two sets. You’ll notice, for exam-
ple, that both parameter sets include a -ComputerName parameter. But the two param-
eter sets will always have at least one unique parameter that exists only in that
parameter set. In this case, the first set supports -AsString and -List, neither of
which are included in the second set; the second set contains numerous parameters

(continued)

I mentioned that the Help command doesn’t actually search for cmdlets; it searches
for help topics. When every cmdlet has a help file, that works out to pretty much the
same thing. But there is a way to directly search for cmdlets: the Get-Command cmdlet.
It has an alias, Gcm, which makes typing it a bit easier.

Like the Help cmdlet, Gcm accepts wildcards, meaning that you can run something
like Gcm *event* to see all commands that contain “event” in their name. For better
or worse, that list will include not only cmdlets, but also external commands like net-
event.dll, which may not be very useful.

A better approach is to use the -Noun or -Verb parameters. Because only cmdlet
names have nouns and verbs, the results will be limited to cmdlets. Gcm -noun
event will return a list of cmdlets dealing with events; Gcm -verb Get will return
all cmdlets capable of retrieving things. You can also use the -CommandType param-
eter, specifying a type of cmdlet: Gcm *log* -type cmdlet will show a list of all
cmdlets that include “log” in their names, and the list won’t include any external ap-
plications or commands.
that aren’t included in the first.

Download from Wow! eBook <www.wowebook.com>

28 CHAPTER 3 Using the help system

 Here’s how this works: if you use a parameter that’s only included in one set,
you’re locked into that set and can only use additional parameters that appear within
that same set. If I choose to use -List, then the only other parameters I can use are
-AsString and -ComputerName, because those are the only other parameters included
in the parameter set where -List lives. I couldn’t add in the -LogName parameter,
because it doesn’t live in the first parameter set. That means -List and -LogName are
mutually exclusive—you’ll never use both of them at the same time, because they live in
different parameter sets.

 Sometimes it’s possible to run a command with only parameters that are shared
between multiple sets. In those cases, the shell will usually select the first-listed param-
eter set. Because each parameter set implies different behavior, it’s important to
understand which parameter set you’re running.

 You’ll notice that every parameter set for every PowerShell cmdlet ends with
[<CommonParameters>]. This refers to a set of eight parameters that are available on
every single cmdlet, no matter how you’re using that cmdlet. We’re not going to dis-
cuss those common parameters now, but we’ll discuss some of them later in this book,
when we get to using them for a real task. Later in this chapter, though, I’ll show you
where to learn more about those common parameters, if you’re interested.

3.4.2 Optional and mandatory parameters

Not every single parameter is needed in order to make a cmdlet run. PowerShell’s
help lists optional parameters in square brackets. For example, [-ComputerName
<string[]>] indicates that the entire -ComputerName parameter is optional. You
don’t have to use it at all—the cmdlet will probably default to the local computer if
you don’t specify an alternative name using this parameter. That’s also why [<Common-
Parameters>] is in square brackets—you can run the command without using any of
the common parameters.

 Almost every cmdlet has at least one optional parameter. You may never need to
use some of these parameters, and others may be used on a daily basis. Keep in mind
that, when you choose to use a parameter, you only have to type enough of the param-
eter name so that PowerShell can unambiguously figure out which parameter you
meant. -L wouldn’t be sufficient for -List, for example, because -L could also mean
-LogName. But -Li would be a legal abbreviation for -List, because no other para-
meter starts with -Li.

 What if you try to run a command and forget one of the mandatory parameters?
Take a look at the help for Get-EventLog, for example, and you’ll see that the -LogName
parameter is mandatory—the parameter isn’t enclosed in square brackets. Try running
Get-EventLog without specifying a log name.

TRY IT NOW Follow along on this example—run Get-EventLog without any
parameters.
Download from Wow! eBook <www.wowebook.com>

29Interpreting the help

PowerShell should have prompted you for the mandatory LogName parameter. If you
type something like System or Application and hit Return, the command will run
correctly. You could also press Ctrl-C to abort the command.

3.4.3 Positional parameters

PowerShell’s designers knew that some parameters would be used so frequently that
you wouldn’t want to continually type the parameter name. Those commonly used
parameters are often positional, meaning that you can provide a value without typing
the parameter’s name, provided you put that value in the correct position.

 There are two ways to identify a positional parameter. The first way is right in the
syntax summary: the parameter name—just the name—will be surrounded by those
square brackets. For example, look at the first two parameters in the second parame-
ter set of Get-EventLog:

[-LogName] <string> [[-InstanceId] <Int64[]>]

The first parameter, -LogName, isn’t optional. I can tell because the entire parame-
ter—its name and its value—aren’t surrounded by square brackets. The parameter
name, however, is enclosed in square brackets, so that’s a positional parameter. I could
provide the log name without having to type -LogName. Because this appears in the
first position within the help file, I know that the log name is the first parameter I have
to provide.

 The second parameter, -InstanceId, is optional—both it and its value are
enclosed in square brackets. Within those, -InstanceId itself is also contained in
square brackets, indicating that this is also a positional parameter. It appears in the
second position, so I would need to provide a value in the second position if I chose to
omit the parameter name.

 The -Before parameter is optional, because it’s entirely enclosed within square
brackets. The -Before name isn’t in square brackets, which tells me that if I choose to
use that parameter, I must type the parameter name (or at least a portion of it).

 There are some tricks to using positional parameters:

■ It’s okay to mix and match positional parameters with those that require their
names. Positional parameters must always be in the correct position. For exam-
ple, Get-EventLog System -Newest 20 is legal. System will be fed to the
-LogName parameter, because that value is in the first position; 20 will go with
the -Newest parameter because the parameter name was used.

■ It’s always legal to specify parameter names, and when you do so, the order in
which you type them isn’t important. Get-EventLog -newest 20 -Log Appli-
cation is legal because I’ve used parameter names (in the case of -LogName, I
abbreviated it).

■ If you use multiple positional parameters, don’t lose track of their positions. Get-
EventLog Application 0 will work, with Application being attached to
Download from Wow! eBook <www.wowebook.com>

30 CHAPTER 3 Using the help system

-LogName and 0 being attached to -InstanceId. Get-EventLog 0 Application
won’t work, because 0 will be attached to -LogName, and there is no log named 0.

I’ll offer a best practice: use parameter names until you become comfortable with a
particular cmdlet and get tired of typing a commonly used parameter name over and
over. After that, use positional parameters to save yourself typing. When the time
comes to paste a command into a text file for easier reuse, always use the full cmdlet
name and type out the complete parameter name—no positional parameters and no
abbreviated parameter names. Doing so makes that file easier to read and understand
in the future, and because you won’t have to type the parameter names (that’s why
you pasted the command into a file, after all), you won’t be creating extra typing work
for yourself.

 I said there were two ways to locate positional parameters. The second requires
that you open the help file using the -full parameter of the Help command.

TRY IT NOW Run Help Get-EventLog -full. Remember to use the spacebar
to view the help file one page at a time, and to press Ctrl-C if you want to stop
viewing the file before reaching the end. For now, page through the entire
file, so that you can scroll back and review it all.

Page down until you see the help entry for the -LogName parameter. It should look
something like this:

-LogName <string>
 Specifies the event log. Enter the log name (the value of th
 e Log property; not the LogDisplayName) of one event log. Wil
 dcard characters are not permitted. This parameter is require
 d.

 Required? true
 Position? 1
 Default value
 Accept pipeline input? false
 Accept wildcard characters? False

Here, I can see that this is a mandatory parameter—it’s listed as required. Further, it’s
a positional parameter, and it occurs in the first position, right after the cmdlet name.

 I always encourage students to focus on reading this full help, rather than the
abbreviated syntax reminder when they’re getting started with a cmdlet. Doing so
reveals more details, including that description of what the parameter is used for. I
can also see that this parameter doesn’t accept wildcards, which means I can’t provide
a value like App*—I need to type out the full log name, such as Application.

3.4.4 Parameter values

The help files also give you clues about what kind of input each parameter accepts.
Some parameters, referred to as switches, don’t require any input value at all. In the
abbreviated syntax, they look like this:
[-AsString]

Download from Wow! eBook <www.wowebook.com>

31Interpreting the help

And in the full syntax, they look like this:

-AsString [<SwitchParameter>]
 Returns the output as strings, instead of objects.

 Required? false
 Position? named
 Default value
 Accept pipeline input? false
 Accept wildcard characters? False

The [<SwitchParameter>] part confirms that this is a switch, and that it doesn’t
expect an input value. Switches are never positional; you always have to type the
parameter name (or at least an abbreviated version of it). Switches are always
optional, so that you have the choice to use them or not.

 Other parameters expect some kind of input value, which will always follow the
parameter name and be separated from the parameter name by a space (and not by a
colon, equal sign, or any other character). In the abbreviated syntax, the type of input
expected is shown in angle brackets, like < >:

[-LogName] <string>

It’s shown the same way in the full syntax:

-Message <string>
 Gets events that have the specified string in their messages.
 You can use this property to search for messages that contai
 n certain words or phrases. Wildcards are permitted.

 Required? false
 Position? named
 Default value
 Accept pipeline input? false
 Accept wildcard characters? True

 These are some common types of input:

■ String—A series of letters and numbers. These can sometimes include spaces,
but when they do, the entire string must be contained within quotation marks.
For example, a string value like C:\Windows doesn’t need to be enclosed in
quotes, but C:\Program Files does, because it has that space in the middle.
For now, you can use single or double quotation marks interchangeably, but it’s
best to stick with single quotes.

■ Int, Int32, or Int64—An integer number (a whole number with no decimal
portion).

■ DateTime—Generally, a string that can be interpreted as a date based on your
computer’s regional settings. In the U.S., that’s usually something like 10-10-
2010, with the month, day, and year.

There are other, more specialized types, and we’ll discuss those as we come to them.
 You’ll also notice some values that have more square brackets:
[-ComputerName <string[]>]

Download from Wow! eBook <www.wowebook.com>

32 CHAPTER 3 Using the help system

The side-by-side brackets after string don’t indicate that something is optional.
Instead, string[] indicates that the parameter can accept an array, or collection, or list
of strings. In these cases, it’s always legal to provide a single value:

Get-EventLog Security -computer Server-R2

But it’s also legal to specify multiple values. A simple way to do so is to provide a
comma-separated list. PowerShell treats all comma-separated lists as arrays of values:

Get-EventLog Security -computer Server-R2,DC4,Files02

Once again, any individual value that contains a space must be enclosed in quotation
marks. However, the entire list doesn’t get enclosed in quotation marks—it’s impor-
tant that only individual values be in quotes. The following is legal:

Get-EventLog Security -computer 'Server-R2','Files02'

Even though neither of those values needs to be in quotation marks, it’s okay to use
the quotes if you want to. But the following is wrong:

Get-EventLog Security -computer 'Server-R2,Files01'

In this case, the cmdlet will be looking for a single computer named Server-
R2,Files01 which is probably not what you wanted.

 Another way to provide a list of values is to type them into a text file, with one value
per line. Here’s an example:

Server-R2
Files02
Files03
DC04
DC03

Then, you can use the Get-Content cmdlet to read the contents of that file, and send
those contents into the -computerName parameter. The way to do this is to force the
shell to execute the Get-Content command first, so that the results get fed to the
parameter.

 Remember in high school math how parentheses, like (), could be used to specify
the order of operations in a mathematical expression? The same thing works in
PowerShell: by enclosing a command in parentheses, you force that command to exe-
cute first:

Get-EventLog Application -computer (Get-Content names.txt)

This is a really useful trick. I keep text files with the names of different classes of com-
puters—web servers, domain controllers, database servers, and so forth—and then
use this trick to run commands against entire sets of computers.

 There are a few other ways to feed a list of values to a parameter, including reading
computer names from Active Directory. Those techniques are a bit more complex,
though, so we’ll come to them in later chapters, after learning some of the cmdlets

needed to make the trick work.

Download from Wow! eBook <www.wowebook.com>

33Accessing “about” topics

 There’s one more way that you can specify multiple values for a parameter, pro-
vided it’s a mandatory parameter: don’t specify the parameter at all. As with all man-
datory parameters, PowerShell will prompt you for the parameter value. For
parameters that accept multiple values, you can type the first value and press Return.
PowerShell will then prompt for a second parameter, which you can type and finish by
hitting Return. Keep doing that until you’re finished, and press Return on a blank
prompt to let PowerShell know that you’re finished. As always, you can press Ctrl-C to
abort the command if you don’t want to be prompted for entries.

3.4.5 Examples

I tend to learn by example, which is why I’ll try to squeeze as many examples into this
book as possible. PowerShell’s designers know that most administrators enjoy having
examples, so they built a lot of them into the help files. If you’ve scrolled to the end of
the help file for Get-EventLog, you probably noticed almost a dozen examples of how
to use the cmdlet.

 There’s an easier way to get to those examples, if they’re all you want to see: use
the -example parameter of the Help command, rather than the -full parameter.

Help Get-EventLog -example

TRY IT NOW Go ahead and pull up the examples for a cmdlet using this new
parameter.

I love having these examples, even though some of them can get pretty complicated.
If an example looks too complicated for you, just ignore it and examine the others for
now. Or, experiment a bit (always on a non-production computer, of course) to see if
you can figure out what the example does, and why.

3.5 Accessing “about” topics
Earlier in this chapter, I mentioned that PowerShell’s help system includes informa-
tion on background topics, as well as help for specific cmdlets. These background
topics are often called “about” topics, because their filenames all start with about_.
You may also recall from earlier in this chapter that all cmdlets support a set of com-
mon parameters. How do you think you could learn more about those common
parameters?

TRY IT NOW Before you read ahead, see if you can list the common parame-
ters by using the help system.

I would start by using wildcards. Because the word “common” has been used repeat-
edly here in the book, that’s probably a good keyword to start with:

Help *common*

It’s such a good keyword, in fact, that it will match only one help topic:

About_common_parameters. That topic will display automatically because it’s the

Download from Wow! eBook <www.wowebook.com>

34 CHAPTER 3 Using the help system

only match. Paging through the file a bit, you’ll find a list of the eight common
parameters:

-Verbose
-Debug
-WarningAction
-WarningVariable
-ErrorAction
-ErrorVariable
-OutVariable
-OutBuffer

The file says that there are two additional “risk mitigation” parameters, but those
aren’t supported by every single cmdlet.

 The “about” topics in the help system are tremendously important, but because
they’re not related to a specific cmdlet, they can be easy to overlook. Try running help
about* for a list of all of them, and you might be surprised at how much extra docu-
mentation is hidden away inside the shell.

 There are several third-party scripts and applications that can make PowerShell’s
help easier to access. At http://mng.bz/5w8E, you’ll find a PowerShell script that con-
structs a graphical browser that lists all of the available help topics. At http://
www.primaltools.com/downloads/communitytools/ you’ll find a dedicated Windows
application that does much the same thing. If you’re an iPhone or iPad or iPod touch
user, there’s an application called iPowerShell that provides handy access to the help
files that come with PowerShell v2, Exchange Server, and a few other products. Log on
to http://download.microsoft.com and enter “PowerShell Help” as a search term, and
you’ll find a downloadable Windows Help File that includes the help (including the
“about” topics) that comes with PowerShell.

3.6 Accessing online help
PowerShell’s help files were written by mere human beings, which means they’re not,
unfortunately, error-free. Updating the help files can be tough, because they’re tech-
nically part of the operating system. Microsoft won’t issue a hotfix for typos, and it’s
tough to even get that kind of non-critical content into a service pack. What Microsoft
can do, however, is update a website.

 The -online parameter of PowerShell’s help command will attempt to open the
web-based help for a given command:

Help Get-EventLog -online

The help is hosted on Microsoft’s TechNet website, and it’s always going to be more
up to date than what’s installed with PowerShell itself. So if you think you’ve spotted
an error in an example or in the syntax, try viewing the online version of the help. Not

every single cmdlet in the universe has online help; it’s up to each product team (like

Download from Wow! eBook <www.wowebook.com>

35Lab

the Exchange team, the SQL Server team, the SharePoint team, and so forth) to pro-
vide that help. But when it’s available, it’s a nice companion to what’s built in.

3.7 Lab
Hopefully, this chapter has conveyed the importance of mastering the help system in
PowerShell. Now it’s time to hone your skills by completing the following tasks. Keep
in mind that sample answers can be found on MoreLunches.com. Look for italicized
words in these tasks, and use them as clues to complete that task.

1 Can you find any cmdlets capable of converting other cmdlets’ output into
HTML?

2 Are there any cmdlets that can redirect output into a file, or to a printer?
3 How many cmdlets are available for working with processes? (Hint: Remember

that cmdlets all use a singular noun.)
4 What cmdlet might you use to write to an event log?
5 You’ve learned that aliases are nicknames for cmdlets; what cmdlets are avail-

able to create, modify, export, or import aliases?
6 Is there a way to keep a transcript of everything you type in the shell, and save

that transcript to a text file?
7 It can take a long time to retrieve all of the entries from the Security event log.

How can you get just the 100 most recent entries?
8 Is there a way to retrieve a list of the services that are installed on a remote

computer?
9 Is there a way to see what processes are running on a remote computer?

10 Examine the help file for the Out-File cmdlet. The files created by this cmdlet
default to a width of how many characters? Is there a parameter that would
enable you to change that width?

11 By default, Out-File will overwrite any existing file that has the same filename
as what you specify. Is there a parameter that would prevent the cmdlet from
overwriting an existing file?

12 How could you see a list of all aliases defined in PowerShell?
13 Using both an alias and abbreviated parameter names, what is the shortest com-

mand line you could type to retrieve a list of running processes from a com-
puter named Server1?

14 How many cmdlets are available that can deal with generic objects? (Hint:
Remember to use a singular noun like “object” rather than a plural one like
“objects”).

15 This chapter briefly mentioned arrays. What help topic could tell you more
about them?
Download from Wow! eBook <www.wowebook.com>

36 CHAPTER 3 Using the help system

16 The Help command can also search the contents of a help file. Are there any
topics that might explain any breaking changes between PowerShell v1 and
PowerShell v2?

3.8 Ideas for on your own
You’re going to be using the help files a lot throughout this book. Personally, I find it
frustrating to be in the middle of a command line and then realize I need to look
something up in the help, because it means I have to stop what I’m typing, read the
help, and then start over. Having an external help utility or help file can be great,
especially if you have two monitors: you can position PowerShell on one monitor and
the help on the second. I mentioned a few external help utilities and files, all of which
are free. Download one (or all) of them and set it up on your computer to use for the
remainder of this book.
Download from Wow! eBook <www.wowebook.com>

The pipeline:
connecting commands
In chapter 2, you saw that running commands in PowerShell is basically the same as
running commands in any other shell: you type a command name, give it some
parameters, and hit Return. What makes PowerShell so special isn’t the way it runs
commands, but rather the way it allows multiple commands to be connected to
each other in powerful, one-line sequences.

4.1 Connect one command to another: less work for you!
PowerShell connects commands to each other in something called a pipeline. The
pipeline is simply a way for one command to pass, or pipe, its output to another
command, so that the second command has something to work with.

 You’ve already seen this in action when you run something like Dir | More.
You’re piping the output of the Dir command into the More command; the More
command takes that directory listing and displays it one page at a time. PowerShell
takes that same piping concept and extends it to much greater effect. In fact,
PowerShell’s use of a pipeline may seem similar, at first, to how Unix and Linux
shells work. Don’t be fooled, though. As you’ll come to realize over the next few
chapters, PowerShell’s pipeline implementation is much richer and more modern.

4.2 Exporting to a CSV or XML file
Run a simple command. Here are a few suggestions:

■ Get-Process (or Ps)
■ Get-Service (or Gsv)
37

■ Get-EventLog Security -newest 100

Download from Wow! eBook <www.wowebook.com>

38 CHAPTER 4 The pipeline: connecting commands

I chose these because they’re easy, straightforward commands; in parentheses, I’ve
given you aliases for Get-Process and Get-Service. For Get-EventLog, I also speci-
fied its mandatory parameter as well as the -newest parameter (so the command
wouldn’t take too long to execute).

TRY IT NOW Go ahead and choose one of these commands to work with. I’ll
use Get-Process for the following examples; you can stick with one of these,
or switch between them to see the differences in the results.

What do you see? When I run Get-Process, a table (shown in figure 4.1) with several
columns of information appears on the screen.

 It’s great to have that information on the screen, but that isn’t all I might want to do
with the information. For example, if I wanted to make some charts and graphs of mem-
ory and CPU utilization, I might want to export the information into a CSV (comma-
separated values) file that could be read into an application like Microsoft Excel.

 That’s where the pipeline, and a second command, come in handy:

Get-Process | Export-CSV procs.csv
Figure 4.1 The output of Get-Process is a table with several columns of information.

Download from Wow! eBook <www.wowebook.com>

39Exporting to a CSV or XML file

Just like piping Dir to More, I’ve piped my processes to Export-CSV. That second cmd-
let has a mandatory positional parameter that I’ve used to specify the output filename.
Because Export-CSV is a native PowerShell cmdlet, it knows how to translate the table
normally generated by Get-Process into a normal CSV file.

 Go ahead and open the file in Windows Notepad to see the results, as shown in
figure 4.2:

Notepad procs.csv

The first line of the file will be a comment, preceded by a # sign, and it identifies the
kind of information that’s included in the file. In my example, it’s System.Diagnos-
tics.Process, which is the under-the-hood name that Windows uses to identify the
information related to a running process. The second line will be column headings,
and the subsequent lines will list the information for the various processes running on
the computer.

 You can pipe the output of almost any Get- cmdlet to Export-CSV and get excel-
lent results. You may also notice that the CSV file contains a great deal more informa-

Figure 4.2 Viewing the exported CSV file in Windows Notepad
tion than what is normally shown on the screen. That’s deliberate. The shell knows it

Download from Wow! eBook <www.wowebook.com>

40 CHAPTER 4 The pipeline: connecting commands

couldn’t possibly fit all of that information on the screen, so it uses a configuration
file, supplied by Microsoft, to select the most important information for on-screen
display. In later chapters, I’ll show you how to override that configuration to display
whatever you want.

 Once the information is saved into a CSV file, you could easily email it to a col-
league and ask them to view it from within PowerShell. They’d simply import the file:

Import-CSV procs.csv

The shell would read in the CSV file and display the process information. It wouldn’t
be based on live information, of course, but it would be a snapshot from the exact
point in time when you created the CSV file.

 What if CSV files aren’t what you need? PowerShell also has an Export-CliXML
cmdlet, which creates a generic command-line interface (CLI) Extensible Markup
Language (XML) file. CliXML is unique to PowerShell, but it can be read by any pro-
gram capable of understanding XML. There’s also a matching Import-CliXML cmdlet.
Both cmdlets, like Import-CSV and Export-CSV, expect a filename as a mandatory
parameter.

TRY IT NOW Try exporting something, such as services, processes, or event log
entries, to a CliXML file. Make sure you can re-import the file, and try open-
ing the resulting file in Notepad and Internet Explorer to see how each of
those applications displays the information.

Does PowerShell include any other import or export commands? You could find out
by using the Get-Command cmdlet and specifying a -verb parameter with either
Import or Export.

TRY IT NOW See if PowerShell comes with any other import or export cmd-
lets. You may want to repeat this check after you load new commands into the
shell, which is something you’ll do in the next chapter.

Both CSV and CliXML files can be useful for persisting snapshots of information, shar-
ing those snapshots with others, and reviewing those snapshots at a later time. In fact,
let’s look at one more cmdlet that has a great way of using those snapshots: Compare-
Object. It has an alias, Diff, which I’ll use.

 First, run help diff and read the help for this cmdlet. There are three parameters
in particular that I want you to pay attention to: -ReferenceObject, -Difference-
Object, and -Property.

Diff is designed to take two sets of information and compare them to each other.
For example, imagine that you ran Get-Process on two different computers that were
sitting side by side. The computer that’s configured just the way you want is on the left
and is the reference computer. The computer on the right might be exactly the same, or it

might be somewhat different; it’s the difference computer. After running the command

Download from Wow! eBook <www.wowebook.com>

41Exporting to a CSV or XML file

on each, you’ll be staring at two tables of information, and your job is to figure out if
there are any differences between the two.

 Because these are processes that you’re looking at, you’re always going to see dif-
ferences in things like CPU and memory utilization numbers, so we’ll ignore those col-
umns. In fact, just focus on the Name column, because we really want to see if the
difference computer contains any additional, or any fewer, processes than the refer-
ence computer. It might take you a while to compare all the process names from both
tables, but you don’t have to—that’s exactly what Diff will do for you.

 Let’s say you sit down at the reference computer and run this:

Get-Process | Export-CliXML reference.xml

I prefer CliXML over CSV for comparisons like this, because CliXML can hold more
information than a flat CSV file. You then transport that XML file over to the differ-
ence computer, and run this:

Diff -reference (Import-CliXML reference.xml)
➥ -difference (Get-Process) -property Name

This is a bit tricky, so I’ll walk you through what’s happening:

■ Just like in math, parentheses in PowerShell control the order of execution. In
this example, they force Import-CliXML and Get-Process to run before Diff
runs. The output from Import-CLI is fed to the -reference parameter, and the
output from Get-Process is fed to the -difference parameter.

Actually, those parameter names are -referenceObject and -difference-
Object; keep in mind that you can abbreviate parameter names by typing just
enough of their names for the shell to be able to figure out which one you
meant. In this case, -reference and -difference are more than enough to
uniquely identify these parameters. I probably could have shortened them even
further to something like -ref and -diff, and the command would still have
worked.

■ Rather than comparing the two complete tables, Diff focuses on the Name,
because I gave it the -property parameter. If I hadn’t, it would think that every
process is different because the values of columns like VM, CPU, and PM are
always going to be different.

■ The result will be a table telling you what’s different. Every process that’s in the
reference set, but not in the difference set, will have a <= indicator (indicating
that the process is only present on the left side). If a process is on the difference
computer but not the reference computer, it’ll have a => indicator instead. Pro-
cesses that match across both sets won’t be included in the Diff output.

TRY IT NOW Go ahead and try this. If you don’t have two computers, start by
exporting your current processes to a CliXML file as I’ve shown above. Then,

start some additional processes like Notepad, Windows Paint, Solitaire, or

Download from Wow! eBook <www.wowebook.com>

42 CHAPTER 4 The pipeline: connecting commands

whatever. Your computer will then be the difference computer (on the right),
whereas the CliXML file will still be the reference set (on the left).

Here’s the output from my test:

PS C:\> diff -reference (import-clixml reference.xml) -difference (get
-process) -property name

name SideIndicator
---- -------------
calc =>
mspaint =>
notepad =>
conhost <=
powershell_ise <=

This is a really useful management trick. If you think of those reference CliXML files as
configuration baselines, you can compare any current computer to that baseline and
get a difference report. Throughout this book, you’ll discover more cmdlets that can
retrieve management information, all of which can be piped into a CliXML file to
become a baseline. You can quickly build a collection of baseline files for services, pro-
cesses, operating system configuration, users and groups, and much more, and then
use those at any time to compare the current state of a system to its baseline.

TRY IT NOW Just for fun, try running the Diff command again, but leave off
the -property parameter entirely. See the results? Every single process is
listed, because values like PM, VM, and so forth have all changed, even though
they’re the same processes. The output also isn’t as useful, because it simply
displays the process’s type name and process name.

By the way, you should know that Diff generally doesn’t do well at comparing text
files. Although other operating systems and shells have a Diff command that’s explic-
itly intended for comparing text files, PowerShell’s Diff command works very differ-
ently. You’ll see just how differently in this chapter’s concluding lab.

NOTE If it seems like you’re using Get-Process, Get-Service, and Get-
EventLog a lot, well, that’s on purpose. I’m guaranteed that you have access to
those cmdlets because they’re native to PowerShell and don’t require an add-
in like Exchange or SharePoint. That said, the skills you’re learning will apply
to every cmdlet you ever need to run, including those that ship with
Exchange, SharePoint, SQL Server, and other server products. Chapter 26 will
go into that idea in more detail, but for now, focus on how to use these cmd-
lets rather than what the cmdlets are accomplishing. I’ll work in some other
representative cmdlets at the right time.

4.3 Piping to a file or printer
Whenever you have nicely formatted output—like the tables generated by Get-Service

or Get-Process—you may want to preserve that in a file, or even on paper. Normally,

Download from Wow! eBook <www.wowebook.com>

43Piping to a file or printer

cmdlet output is directed to the screen, which PowerShell refers to as the Host. You can
change where that output goes. In fact, I’ve already showed you one way to do so:

Dir > DirectoryList.txt

That’s a shortcut added to PowerShell to provide syntactic compatibility with the older
Cmd.exe shell. In reality, when you run that command, here’s what PowerShell does
under the hood:

Dir | Out-File DirectoryList.txt

You can run that same command on your own, instead of using the > syntax. Why
would you do so? Out-File also provides additional parameters that let you specify
alternative character encodings (such as UTF8 or Unicode), append content to an
existing file, and so forth. By default, the files created by Out-File are 80 columns
wide, so sometimes PowerShell might alter command output to fit within 80 charac-
ters. That alteration might make the file’s contents appear different than when you
run the same command on the screen. Read its help file and see if you can spot a
parameter of Out-File that would let you change the output file width to something
other than 80 characters.

TRY IT NOW Don’t look here—open up that help file and see what you can
find. I guarantee you’ll spot the right parameter in a few moments.

PowerShell has a variety of Out- cmdlets. One is called Out-Default, and that’s the
one the shell uses when you don’t specify a different Out- cmdlet. If you run this,

Dir

you’re technically running this,

Dir | Out-Default

even if you don’t realize it. Out-Default does nothing more than direct content to
Out-Host, so you’re really running this,

Dir | Out-Default | Out-Host

without realizing it. Out-Host is what handles getting information displayed on the
screen. What other Out- cmdlets can you find?

TRY IT NOW See what other Out- cmdlets you can discover. One way would be
to use the Help command, using wildcards, such as Help Out*. Another
would be to use Get-Command the same way, such as Get-Command Out*. Or,
you could specify the -verb parameter: Get-Command -verb Out. What do
you come up with?

Out-Printer is probably one of the most useful of the remaining Out- cmdlets. Out-
GridView is also neat; it does require, however, that you have Microsoft .NET Frame-
work v3.5 and the Windows PowerShell ISE installed, which isn’t the case by default on

server operating systems.

Download from Wow! eBook <www.wowebook.com>

44 CHAPTER 4 The pipeline: connecting commands

 If you do have those installed, try running Get-Service | Out-GridView to see
what happens. Out-Null and Out-String have specific uses that we won’t get into
right now, but you’re welcome to read their help files and look at the examples
included in those files.

4.4 Converting to HTML
Want to produce HTML reports? Easy: pipe your command to ConvertTo-HTML. This
command produces well-formed, generic HTML that will display in any web browser.
It’s plain-looking, but you can reference a Cascading Style Sheet (CSS) to specify pret-
tier formatting if desired. Notice that this doesn’t require a filename:

Get-Service | ConvertTo-HTML

TRY IT NOW Make sure you run that command yourself—I want you to see
what it does before you proceed.

In the PowerShell world, the verb Export implies that you’re taking data, converting it
to some other format, and saving that other format in some kind of storage, such as a
file. The verb ConvertTo implies only a portion of that process: the conversion to a dif-
ferent format, but not saving it into a file. So when you ran the preceding command,
you got a screen full of HTML, which probably isn’t what you want. Stop for a second:
can you think of how you’d get that HTML into a text file on disk?

TRY IT NOW If you can think of a way, go ahead and try it before you read on.

This command would do the trick:

Get-Service | ConvertTo-HTML | Out-File services.html

See how connecting more and more commands allows you to have increasingly pow-
erful command lines? Each command handles a single step in the process, and the
entire command line as a whole accomplishes a useful task.

 PowerShell ships with other ConvertTo- cmdlets, including ConvertTo-CSV and
ConvertTo-XML. As with ConvertTo-HTML, these don’t create a file on disk; they trans-
late command output into CSV or XML, respectively. You could pipe that converted
output to Out-File to then save it to disk, although it would be shorter to use Export-
CSV or Export-CliXML, because those do both the conversion and the saving.

Above and beyond

Time for a bit more useless background information, although, in this case, it’s the
answer to a question that a lot of students often ask me: why would Microsoft provide
both Export-CSV and ConvertTo-CSV, as well as two nearly identical cmdlets for
XML? In certain advanced scenarios, you might not want to save the data to a file on
disk. For example, you might want to convert data to XML and then transmit it to a
web service, or some other destination. By having distinct ConvertTo- cmdlets that

don’t save to a file, you have the flexibility of doing whatever you want.

Download from Wow! eBook <www.wowebook.com>

45Using cmdlets to kill processes and stop services

4.5 Using cmdlets to kill processes and stop services
Exporting and converting aren’t the only reasons you might want to connect two com-
mands together. For example, consider—but please do not run—this command:

Get-Process | Stop-Process

Can you imagine what that command would do? I’ll tell you: crash your computer. It
would retrieve every process and then start trying to end each one of them. It would
get to a critical process, like the Local Security Authority, and your computer would
probably crash with the famous Blue Screen of Death (BSOD). If you’re running
PowerShell inside of a virtual machine and want to have a little fun, go ahead and try
running that command.

 The point is that cmdlets with the same noun (in this case, Process) can often pass
information between each other. Typically, you would specify the name of a specific
process rather than trying to stop them all:

Get-Process -name Notepad | Stop-Process

Services offer something similar: the output from Get-Service can be piped to cmd-
lets like Stop-Service, Start-Service, Set-Service, and so forth. As you might
expect, there are some specific rules about which commands can connect to each
other. For example, if you look at a command sequence like Get-ADUser | New-SQL-
Database, you would probably not expect it to do anything sensible (although it
might well do something nonsensical). In chapter 7, we’ll dive into the rules that gov-
ern how commands can connect to each other.

 There is one more thing I’d like you to know about cmdlets like Stop-Service and
Stop-Process. These cmdlets modify the system in some fashion, and all cmdlets that
modify the system have an internally defined impact level. This impact level is set by the
cmdlet’s creator, and it can’t be changed. The shell has a corresponding $Confirm-
Preference setting, which is set to High by default. You can see your shell’s setting by
typing the setting name, like this:

PS C:\> $confirmpreference
High

Here’s how it works: When a cmdlet’s internal impact level is equal to or higher than
the shell’s $ConfirmPreference setting, the shell will automatically ask, “Are you
sure?” when the cmdlet does whatever it’s trying to do. In fact, if you tried the crash-
your-computer command, earlier, you probably were asked, “Are you sure?” for each
process. When a cmdlet’s internal impact level is less than the shell’s $Confirm-
Preference, you don’t automatically get the “Are you sure?” prompt.

 You can, however, force the shell to ask you if you’re sure:

Get-Service | Stop-Service -confirm

Just add the -confirm parameter to the cmdlet. This should be supported by any cmd-
let that makes some kind of change to the system, and it’ll show up in the help file for

the cmdlet if it’s supported.

Download from Wow! eBook <www.wowebook.com>

46 CHAPTER 4 The pipeline: connecting commands

 A similar parameter is -whatif. This is supported by any cmdlet that supports
-confirm. The -whatif parameter isn’t triggered by default, but you can specify it
whenever you want to:

PS C:\> get-process | stop-process -whatif
What if: Performing operation "Stop-Process" on Target "conhost (1920)
".
What if: Performing operation "Stop-Process" on Target "conhost (1960)
".
What if: Performing operation "Stop-Process" on Target "conhost (2460)
".
What if: Performing operation "Stop-Process" on Target "csrss (316)".

It tells you what the cmdlet would have done, without actually letting the cmdlet do it.
It’s a useful way to preview what a potentially dangerous cmdlet would have done to
your computer, to make certain that you want to do that.

4.6 Lab
I’ve kept this chapter’s text a bit shorter because some of the examples I showed you
probably took a bit longer to complete, and because I want you to spend a bit more
time completing the following hands-on exercises. If you haven’t already completed
all of the “Try it now” tasks in the chapter, I strongly recommend that you do so before
tackling these tasks:

1 Create a CliXML reference file for the services on your computer. Then, change
the status of some non-essential service like BITS (stop it if it’s already started;
start it if it’s stopped on your computer). Finally, use Diff to compare the refer-
ence CliXML file to the current state of your computer’s services. You’ll need to
specify more than the Name property for the comparison—does the -property
parameter of Diff accept multiple values? How would you specify those multi-
ple values?

2 Create two similar, but different, text files. Try comparing them using Diff. To
do so, run something like this: Diff -reference (Get-Content File1.txt)
-difference (Get-Content File2.txt). If the files have only one line of text
that’s different, the command should work. If you add a bunch of lines to one
file, the command may stop working. Try experimenting with the Diff com-
mand’s -syncWindow parameter to see if you can get the command working
again.

3 What happens if you run Get-Service | Export-CSV services.csv | Out-File
from the console? Why does that happen?

4 Apart from getting one or more services and piping them to Stop-Service,
what other means does Stop-Service provide for you to specify the service or
services you want to stop? Is it possible to stop a service without using Get-
Service at all?
Download from Wow! eBook <www.wowebook.com>

47Lab

5 What if you wanted to create a pipe-delimited file instead of a comma-separated
file? You would still use the Export-CSV command, but what parameters would
you specify?

6 Is there a way to eliminate the # comment line from the top of an exported CSV
file? That line normally contains type information, but what if you wanted to
omit that from a particular file?

7 Export-CliXML and Export-CSV both modify the system, because they can cre-
ate and overwrite files. What parameter would prevent them from overwriting
an existing file? What parameter would ask you if you were sure before proceed-
ing to write the output file?

8 Windows maintains several regional settings, which include a default list separa-
tor. On U.S. systems, that separator is a comma. How can you tell Export-CSV to
use the system’s default separator, rather than a comma?
Download from Wow! eBook <www.wowebook.com>

Adding commands
One of the primary strengths of PowerShell is its extensibility. As Microsoft contin-
ues to invest in PowerShell, they develop more and more commands for products
like Exchange Server, SharePoint Server, the System Center family, SQL Server, and
so on. Typically, installing the management tools for these products gives you both
a graphical management console of some kind and one or more extensions for
Windows PowerShell.

5.1 How one shell can do everything
I know that you’re probably familiar with the graphical Microsoft Management
Console (MMC), so let’s use that as an example of how PowerShell works. The two
work similarly when it comes to extensibility, in part because both the MMC and
PowerShell are developed by the same Management Frameworks team within
Microsoft.

 When you open a new, blank MMC console, it’s pretty useless. It can’t really do
anything, because the MMC has very little built-in functionality. To make it useful,
you go to its File menu and select Add/Remove Snapins. In the MMC world, a snap-
in is some tool like Active Directory Users and Computers, or DNS Management, or
DHCP Administration, or something like that. You can choose to add as many snap-
ins to your MMC as you like, and you can save the resulting console so that it’s easier
to re-open that same set of snap-ins in the future.

 Where do snap-ins come from? Typically, you install the management tools asso-
ciated with a product like Exchange Server or Forefront or System Center. Once
you’ve done so, those products’ snap-ins are listed on the Add/Remove Snapins
48

dialog box within the MMC. Most products also install their own preconfigured

Download from Wow! eBook <www.wowebook.com>

49About product-specific management shells

MMC console files, which do nothing but load up the basic MMC and preload a snap-in
or two. You don’t have to use those preconfigured consoles if you don’t want to,
because you can always open a blank MMC and load the exact snap-ins you want. For
example, the preconfigured Exchange Server MMC console doesn’t include the Active
Directory Sites and Services snap-in, but you could easily create an MMC console that
includes both Exchange and Sites and Services.

 PowerShell works in almost exactly the same way. Install the management tools for
a given product (the option to install management tools is usually included in a prod-
uct’s Setup menu—just try to install a product like Exchange Server on Windows 7,
and the management tools will often be the only thing Setup offers). Doing so will
give you any related PowerShell extensions, and it may even create a product-specific
management shell.

5.2 About product-specific management shells
Those product-specific management shells have been a huge source of confusion. Let
me clearly state that there is only one Windows PowerShell. There isn’t a separate
PowerShell for Exchange and Active Directory; it’s all a single shell.

 Let’s take Active Directory as an example, because I’m hoping that you have access
to a Windows Server 2008 R2 domain controller (even if it’s running in a virtual
machine as a standalone domain). Open the Start menu, go to Administrative Tools,
and locate the Active Directory Module for Windows PowerShell. Right-click that
item, and select Properties from the context menu. The first thing you should see is
the Target, which should be this:

%windir%\system32\WindowsPowerShell\v1.0\powershell.exe
➥ -noexit -command import-module ActiveDirectory

See? This is running the standard PowerShell.exe application and giving it a com-
mand-line parameter to run a specific command: Import-Module ActiveDirectory.
The result is a copy of the shell that has the ActiveDirectory module preloaded, but
there’s no reason in the world why you couldn’t open the “normal” PowerShell and
run that same command yourself to get the same functionality.

 The same thing holds true for almost every product-specific “management shell”
that you’ll find: Exchange, SharePoint, you name it. Examine the properties of those
Start menu shortcuts, and you’ll find that they open the normal PowerShell.exe, and
pass a command-line parameter to either import a module, add a snap-in, or load a
preconfigured console file (and the console file is simply a list of snap-ins to load auto-
matically).

SQL Server 2008 and SQL Server 2008 R2 are exceptions. Their “product-specific”
shell, Sqlps, is a specially compiled version of PowerShell that will only run the SQL
Server extensions. Properly called a mini-shell, this is an approach Microsoft tried for
the first time in SQL Server. It has been unpopular, and the company won’t be using
that approach again.
Download from Wow! eBook <www.wowebook.com>

50 CHAPTER 5 Adding commands

 You’re not constrained to working with the prespecified extensions. Once you
open the Exchange Management Shell, you could run Import-Module Active-

Directory, and provided the ActiveDirectory module was present on your computer,
you’d add the Active Directory functionality to that shell. You could also open a nor-
mal PowerShell console and manually add whatever extensions you like.

 As I said, this has been a huge point of confusion for folks, some of whom believed
there were multiple versions of PowerShell that could not cross-utilize each others’
functionality. I even got into an argument in my blog (http://windowsitpro.com/go/
DonJonesPowerShell) over it at one point and had to ask half the PowerShell team to
step in and back me up! So trust me: you can have all the functionality you want inside
a single shell, and the product-specific shell shortcuts in the Start menu don’t in any
way limit you or imply that there are special versions of PowerShell for those products.

5.3 Extensions: finding and adding snap-ins
There are two kinds of extensions for PowerShell v2: modules and snap-ins. We’ll look
at snap-ins first.

 The proper name for a snap-in is PSSnapin, which distinguishes these from snap-
ins for the graphical MMS. PSSnapins were first created for PowerShell v1. A PSSnapin
generally consists of one or more DLL files, accompanied by additional XML files that
contain configuration settings and help text. PSSnapins have to be installed and regis-
tered in order for PowerShell to know they exist.

 You can find a list of available snap-ins by running Get-PSSnapin -registered
from within PowerShell. On my computer, which is a domain controller that happens
to have SQL Server 2008 installed, I see this:

PS C:\> get-pssnapin -registered

Name : SqlServerCmdletSnapin100
PSVersion : 2.0
Description : This is a PowerShell snap-in that includes various SQL
 Server cmdlets.

Name : SqlServerProviderSnapin100
PSVersion : 2.0
Description : SQL Server Provider

TRY IT NOW You should follow along with everything in this chapter, running
the same commands in your own copy of PowerShell. I won’t add a “Try it
now” reminder for each command that I run, but I’ll be expecting you to fol-
low along.

That tells me that I have two snap-ins installed and available, but not loaded. You can
see a list of loaded snap-ins by just running Get-PSSnapin. That list will include all of
the core, automatically loaded snap-ins that contain PowerShell’s native functionality.

 To load a snap-in, run Add-PSSnapin and specify the name of the snap-in:
PS C:\> add-pssnapin sqlservercmdletsnapin100

Download from Wow! eBook <www.wowebook.com>

51Extensions: finding and adding snap-ins

As is often the case in PowerShell, you don’t need to worry about getting upper- and
lowercase letters correct. The shell won’t care.

 Once a snap-in is loaded, you’ll want to figure out what it added to the shell. A PS-
Snapin can add cmdlets, PSDrive providers, or both to the shell. To find out what cmd-
lets were added, use Get-Command (or its alias, Gcm):

PS C:\> gcm -pssnapin sqlservercmdletsnapin100

CommandType Name Definition
----------- ---- ----------
Cmdlet Invoke-PolicyEvaluation Invoke-PolicyEvaluation...
Cmdlet Invoke-Sqlcmd Invoke-Sqlcmd [[-Query]...

Here, I’ve specified that only the commands from the SqlServerCmdletSnapin100 be
included in the output, and only two were listed. Yes, that’s all SQL Server adds in that
snap-in, but one of those is capable of executing Transact-SQL (T-SQL) commands!
Because you can accomplish almost anything in SQL Server by executing a T-SQL com-
mand, the Invoke-Sqlcmd cmdlet makes it possible to do almost anything you might
need to do in SQL Server.

 To see if the snap-in added any new PSDrive providers, run Get-PSProvider. You
can’t specify a snap-in with this cmdlet, so you’ll have to be familiar with the providers
that were already there, and scan through the list manually to spot anything new. Here
are my results:

PS C:\> get-psprovider

Name Capabilities Drives
---- ------------ ------
WSMan Credentials {WSMan}
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess {C, A, D}
Function ShouldProcess {Function}
Registry ShouldProcess, Transa... {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}

Doesn’t look like anything new. I shouldn’t be surprised, because the snap-in I loaded
was named SqlServerCmdletSnapin100. If you recall, my list of available snap-ins also
included SqlServerProviderSnapin100, suggesting that the SQL Server team, for some
reason, packaged their cmdlets and their PSDrive provider separately. Let’s try adding
the second one:

PS C:\> add-pssnapin sqlserverprovidersnapin100
PS C:\> get-psprovider

Name Capabilities Drives
---- ------------ ------
WSMan Credentials {WSMan}
Alias ShouldProcess {Alias}

Environment ShouldProcess {Env}

Download from Wow! eBook <www.wowebook.com>

52 CHAPTER 5 Adding commands

Name Capabilities Drives (continued)
---- ------------ ------
FileSystem Filter, ShouldProcess {C, A, D}
Function ShouldProcess {Function}
Registry ShouldProcess, Transa... {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}
SqlServer Credentials {SQLSERVER}

There we go! A SQLSERVER: drive has been added to my shell, powered by the
SqlServer PSDrive provider. That means I could run cd sqlserver: to change to the
SQL Server drive, and presumably start exploring databases and stuff.

5.4 Extensions: finding and adding modules
The second type of extension supported by PowerShell v2 (and not available in v1) is
a module. Modules are designed to be a little more self-contained, and somewhat easier
to distribute, but they work similarly to PSSnapins. You do need to know a bit more
about them in order to find and use them.

 Modules don’t require advanced registration. Instead, PowerShell will automati-
cally look in a certain set of paths to find modules. The PSModulePath environment
variable defines the paths where modules are expected to live:

PS C:\> get-content env:psmodulepath
C:\Users\Administrator\Documents\WindowsPowerShell\Modules;C:\Windows
\system32\WindowsPowerShell\v1.0\Modules\

As you can see, there are two default locations: one in the operating system folder,
where system modules live, and one in the Documents folder, where any personal
modules can be added. You can also add a module from any other location, provided
you know its full path.

 There are a couple of ways to see what modules are available. One is to get a direc-
tory listing of those two paths. I’ll just do the system path:

PS C:\> dir C:\windows\System32\WindowsPowerShell\v1.0\Modules

 Directory: C:\windows\System32\WindowsPowerShell\v1.0\Modules

Mode LastWriteTime Length Name
---- ------------- -----------
d---s 11/21/2009 9:58 AM ActiveDirectory
d---- 7/13/2009 10:41 PM ADRMS
d---s 7/13/2009 10:41 PM AppLocker
d---- 7/13/2009 10:41 PM BestPractices
d---s 7/13/2009 10:41 PM BitsTransfer
d---- 11/21/2009 10:08 AM GroupPolicy
d---- 7/13/2009 10:37 PM PSDiagnostics
d---- 7/13/2009 10:41 PM ServerManager
d---- 7/13/2009 10:41 PM TroubleshootingPack
d---- 11/21/2009 10:02 AM WebAdministration
Download from Wow! eBook <www.wowebook.com>

53Extensions: finding and adding modules

This doesn’t help you locate any modules that might be installed in other locations,
but hopefully if you install such a module, its documentation will help you figure out
where it is. The preceding list shows the modules that come with Windows Server 2008
R2—or, at least, the modules installed on my server. Adding additional server roles or
features may also add modules to support those roles and features, so it’s worth check-
ing this location any time you’ve installed something new.

 Another way to get a list of available modules is to use Get-Module:

PS C:\> get-module -listavailable

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest ActiveDirectory {}
Manifest ADRMS {}
Manifest AppLocker {}
Manifest BestPractices {}
Manifest BitsTransfer {}
Manifest GroupPolicy {}
Manifest PSDiagnostics {}
Manifest ServerManager {}
Manifest TroubleshootingPack {}
Manifest WebAdministration {}

This list includes all modules installed in any path listed in the PSModulePath environ-
ment variable. These are the modules that the shell knows how to find. Any modules
installed elsewhere won’t be included in this list.

 There are two ways to add a module, depending on whether or not the module is
installed in one of the predefined paths. If the module is installed in one of those pre-
defined paths, you use Import-Module and the module’s name. You can then run Get-
Module, with no parameters, to verify that the module loaded:

PS C:\> import-module activedirectory
PS C:\> get-module

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest activedirectory {Set-ADOrganizationalUnit, Ge...

If the module is located elsewhere, you would need to specify the complete path to
the module, such as C:\MyPrograms\Something\MyModule, rather than just the mod-
ule name.

 If you have a Start menu shortcut for a product-specific shell—say, SharePoint
Server—and you don’t know where that product installed its PowerShell module,
open the properties for the Start menu shortcut. As I showed you earlier in this chap-
ter, the Target property of the shortcut will contain the Import-Module command
used to load the module, and that will show you the module name and path.

 Once a module is loaded, you can find out what commands it added by using Get-
Command again:
PS C:\> gcm -module activedirectory

Download from Wow! eBook <www.wowebook.com>

54 CHAPTER 5 Adding commands

CommandType Name Definition
----------- ---- ----------
Cmdlet Add-ADComputerServiceAc... Add-ADComputerServiceAc...
Cmdlet Add-ADDomainControllerP... Add-ADDomainControllerP...
Cmdlet Add-ADFineGrainedPasswo... Add-ADFineGrainedPasswo...
Cmdlet Add-ADGroupMember Add-ADGroupMember [-Ide...
Cmdlet Add-ADPrincipalGroupMem... Add-ADPrincipalGroupMem...
Cmdlet Clear-ADAccountExpiration Clear-ADAccountExpirati...

This time, I used the -module parameter to specify the module name, limiting the list
of commands to those that are included with the specified module.

 Modules can also add PSDrive providers, and you would use the same technique as
you did for PSSnapins to identify any new providers: run Get-PSProvider.

5.5 Command conflict and removing extensions
Take a close look at the commands I added for both SQL Server and Active Directory.
Notice anything special about the commands’ names?

 Most PowerShell extensions—Exchange Server being a notable exception, because
it was the first product to include a PowerShell extension, and they hadn’t thought
everything through at that point—add a short prefix to the noun portion of their
command names. Get-ADUser, for example, or Invoke-SqlCmd. These prefixes may
seem awkward, but they’re designed to prevent command conflicts.

 For example, suppose you loaded two modules that each contained a Get-User cmd-
let. With two commands having the same name and being loaded at the same time,
which one would PowerShell execute when you run Get-User? The last one loaded. But
the other commands having the same name are not inaccessible. To specifically run
either command, you would have to use a somewhat awkward naming convention that
requires both the snap-in name and the command name. So if one Get-User came
from a snap-in called MyCoolPowerShellSnapin, you’d have to run this:

MyCoolPowerShellSnapin\Get-User

That’s an awful lot of typing, and it’s why Microsoft suggests adding a product-specific
prefix, like AD or SQL, to the noun of each command. Doing so helps prevent a con-
flict and helps make commands easier to identify and use.

 If you do wind up with a conflict, you can always choose to remove one of the con-
flicting extensions. Simply run Remove-PSSnapin or Remove-Module, along with the
snap-in or module name, to unload an extension.

5.6 Finding help on newly added commands
Once you have a list of newly added commands, you can start reading through their
help. Microsoft-supplied snap-ins and modules usually come with help files, but third-
party snap-ins or modules may not. (If they don’t, you should definitely complain to the
vendor—there’s no reason not to provided integrated help.) Given that you already
know how to get a list of command names from a snap-in or module, finding the help

should be easy. For example, Help Get-ADUser will retrieve the help for that command.

Download from Wow! eBook <www.wowebook.com>

55Playing with Server Manager via command line!

 Help information is stored as a sort of database, not as formatted text files. When
you ask for help, PowerShell reads the help database for that command and dynami-
cally constructs the help display that you see on the screen. That means all help files
will have the same format, the same layout, and the same typographical conventions,
keeping everything consistent. Everything that you learned about help files in chap-
ter 3 will apply to the help for snap-ins and modules, including the ability to use the
-example parameter to see examples of how to use the newly added commands.

5.7 Playing with Server Manager via command line!
Let’s put your newfound knowledge to use. I’m going to assume that you’re using a
Windows Server 2008 R2 domain controller, and I’d like you to follow along with the
commands I present in this section. More importantly, I want you to follow the process
and the thinking that I’ll explain, because this is exactly how I teach myself to use new
commands without rushing out and buying a new book for every single product and
feature that I run across. In the concluding lab for this chapter, I’ll have you repeat
this same process on your own, to learn about an entirely new set of commands.

 My goal is to get an inventory of installed Windows roles and features, and to add a
new role or feature. To begin with, I know that I’d normally use the Server Manager GUI.
I’ll start by looking for a snap-in or module that seems related to Server Manager. That
requires me to run both Get-PSSnapin -registered and Get-Module -listavailable:

PS C:\> get-pssnapin -registered

Name : SqlServerCmdletSnapin100
PSVersion : 2.0
Description : This is a PowerShell snap-in that includes various SQL
 Server cmdlets.

Name : SqlServerProviderSnapin100
PSVersion : 2.0
Description : SQL Server Provider

PS C:\> get-module -list

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest ActiveDirectory {}
Manifest ADRMS {}
Manifest AppLocker {}
Manifest BestPractices {}
Manifest BitsTransfer {}
Manifest GroupPolicy {}
Manifest PSDiagnostics {}
Manifest ServerManager {}
Manifest TroubleshootingPack {}
Manifest WebAdministration {}
PS C:\>

Download from Wow! eBook <www.wowebook.com>

56 CHAPTER 5 Adding commands

I do see a ServerManager module in that list, so I’ll start there. The next step is to get
that module loaded into the shell. If it were a snap-in, I’d use Add-PSSnapin, but
because it’s a module, I’ll use Import-Module:

PS C:\> import-module servermanager

Now I need to see what commands were added by that module. I’ll use Get-Command
to do so. If this had been a snap-in, I’d specify the -pssnapin parameter, but because
it’s a module, I’ll use the -module parameter:

PS C:\> get-command -module servermanager

CommandType Name Definition
----------- ---- ----------
Cmdlet Add-WindowsFeature Add-WindowsFeature [-Na...
Cmdlet Get-WindowsFeature Get-WindowsFeature [[-N...
Cmdlet Remove-WindowsFeature Remove-WindowsFeature [...

Well that’s a short list! But it seems to have the functionality I’m after: commands to
add, get, and remove Windows features. Hopefully that will include roles, and not just
features. I always like to start with Get- commands, because they’re non-destructive.
I’ll read the help first, just to be sure:

PS C:\>help get-windowsfeature

The help is pretty short for this one. It has an optional parameter, -Name, and a second
optional parameter, -logPath. It also supports the common parameters, like all cmd-
lets, but I don’t need to worry about any of those right now.

 Because I don’t see any mandatory parameters, I’ll run the command without any
parameters at all. If I missed a mandatory parameter, the shell will prompt me anyway.
The output of the command is quite long, so I’ll just include a portion of it here:

PS C:\> get-windowsfeature

Display Name Name
------------ ----
[] Active Directory Certificate Services AD-Certifi...
 [] Certification Authority ADCS-Cert-...
 [] Certification Authority Web Enrollment ADCS-Web-E...
 [] Certificate Enrollment Web Service ADCS-Enrol...
 [] Certificate Enrollment Policy Web Service ADCS-Enrol...
[X] Active Directory Domain Services AD-Domain-...
 [X] Active Directory Domain Controller ADDS-Domai...
 [] Identity Management for UNIX ADDS-Ident...

I can see which features and roles (it does include roles!) are installed, and which
ones are available to install. The Name column appears to contain the official name of
the role or feature. Unfortunately, I have my PowerShell window too narrow to display
the full name (I did that so the output would be narrow enough to fit in this book), so
I’ll need to make the window a bit larger and run the command again.
Download from Wow! eBook <www.wowebook.com>

57Playing with Server Manager via command line!

 I want to try to add a Windows feature. Scrolling down, I see that Telnet Client and
Telnet Server are both available, with the official names Telnet-Client and Telnet-
Server. Both of those features seem pretty harmless, so I’ll experiment with them.

 Reading the help for Add-WindowsFeature, I can see that it supports a mandatory
-Name parameter that accepts more than one value. It also has an optional -Include
AllSubFeature switch, and an optional -logPath parameter. Because this modifies
the system, it supports -confirm and -whatif, which is nice. I also see a -Restart
parameter, and I’m not sure what that does. I’ll need more detail:

PS C:\>help add-windowsfeature -full

The detailed help for that parameter tells me that -Restart will restart the computer
automatically if restarting is required. Well, that seems like a good idea, and I’m not
testing on a production computer, so I’ll go ahead and use that. I also see that the
-Concurrent switch allows concurrent instances of the cmdlet to be running at the
same time. I don’t plan to do that, so I won’t use that switch. The help also says that
use of that switch “is not recommended,” which is all the more reason for me to not
use it!

 Here we go:

PS C:\> add-windowsfeature -name telnet-client,telnet-server -restart
-whatif
What if: Checking if running in 'WhatIf' Mode.
What if: Performing operation "Add-WindowsFeature" on Target "[Telnet
Server] Telnet Server".
What if: Performing operation "Add-WindowsFeature" on Target "[Telnet
Client] Telnet Client".
What if: This server may need to be restarted after the installation c
ompletes.

Success Restart Needed Exit Code Feature Result
------- -------------- --------- --------------
True Maybe Success {}

You can see that I got nervous at the last second and added -whatif. The WhatIf out-
put is telling me that it would have added Telnet Server and Telnet Client, and that I
might need a restart. Well, okay, at least now I would know to warn anyone who might
be using that server, or to schedule this for off-hours. Let’s try again, this time without
-whatif.

PS C:\>add-windowsfeature -name telnet-client,telnet-server -restart

A neat little progress bar pops up as the installation proceeds. I watch the progress bar
inch its way up to 100 percent, and then the shell just sits there for a few minutes,
thinking. Then it displays this:

Success Restart Needed Exit Code Feature Result
------- -------------- --------- --------------

True No Success {Telnet Server, Telnet Client}

Download from Wow! eBook <www.wowebook.com>

58 CHAPTER 5 Adding commands

So a restart wasn’t necessary, and my server is still running. One last check:

PS C:\>get-windowsfeature
[] Active Directory Certificate Services AD-Certifi...
 [] Certification Authority ADCS-Cert-...
 [] Certification Authority Web Enrollment ADCS-Web-E...
 [] Certificate Enrollment Web Service ADCS-Enrol...
 [] Certificate Enrollment Policy Web Service ADCS-Enrol...
[X] Active Directory Domain Services AD-Domain-...
 [X] Active Directory Domain Controller ADDS-Domai...
...
[] Subsystem for UNIX-based Applications Subsystem-...
[X] Telnet Client Telnet-Client
[X] Telnet Server Telnet-Server
[] TFTP Client TFTP-Client

I chopped out some of the output in the middle, so that you can see that the two Tel-
net features are now showing as installed. Perfect!

 This is a great example of how to discover new functionality that matches what you
already know how to do in the GUI. I found a module, loaded it, found the commands
it includes, learned how to use those commands, and accomplished a task. This is
PowerShell in action, not as a scripting language, but simply as a command-line shell.
I could perform this same task even on Server Core, where PowerShell is available but
the GUI Server Manager isn’t.

5.8 Profile scripts: preloading extensions when the shell starts
Let’s say you’ve opened PowerShell, and you’ve loaded several favorite snap-ins and
modules. That requires you to run one command for each snap-in or module you
want to load, which can take a few minutes of typing if there are several of them. Now
you’re done using the shell, so you close its window. The next time you open a shell
window, all of your snap-ins and modules are gone, and you have to run all those com-
mands again to load them back. Horrible! Surely there’s a better way!

 There are actually two better ways. The first way involves creating a console file, and
this only works to memorize PSSnapins that are loaded—it won’t work with any mod-
ules you may have loaded. Start by loading in all of the snap-ins you want, and then
run this command:

Export-Console c:\myshell.psc

That creates a small XML file that lists the snap-ins you loaded into the shell.
 Now, you’ll want to create a new PowerShell shortcut somewhere. The target of

that shortcut should be

%windir%\system32\WindowsPowerShell\v1.0\powershell.exe
➥ -noexit -psconsolefile c:\myshell.psc

When you use that shortcut to open a new PowerShell window, your console will load,
and the shell will automatically add any snap-ins listed in that console file. Again,
Download from Wow! eBook <www.wowebook.com>

59Common points of confusion

modules aren’t included. So what do you do if you have a mix of snap-ins and
modules, or if you have some modules that you always want loaded?

 The answer is to use profile scripts. I’ve mentioned those before, and we’re going to
cover them in more detail in chapter 24, but for now here’s how you can use them:

1 In your Documents folder, create a new folder called WindowsPowerShell (no
spaces in that folder name).

2 In the newly created folder, use Notepad to create a file named profile.ps1.
When you save the file in Notepad, be sure to enclose the filename in quotation
marks: “profile.ps1”. That will prevent Notepad from adding a .txt filename
extension. If that .txt extension gets added, this trick won’t work.

3 In that newly created text file, type your Add-PSSnapin and Import-Module
commands, listing one command per line to load whatever snap-ins and mod-
ules you like.

4 Back in PowerShell, you’ll need to enable script execution, which is disabled by
default. There are some security consequences to this that we’ll discuss in chap-
ter 14, but for now I’m assuming that you’re doing this in a standalone virtual
machine, or on a standalone test computer, and that security is less of an issue.
In the shell, run Set-ExecutionPolicy RemoteSigned. Note that the command
will only work if you’ve run the shell as Administrator. It’s also possible for a
Group Policy object (GPO) to override this setting; you’ll get a warning message
if that’s the case.

5 Assuming you haven’t had any errors or warnings up to this point, close and re-
open the shell. It will automatically load profile.ps1, execute your commands,
and load your favorite snap-ins and modules for you.

TRY IT NOW Even if you don’t have a favorite snap-in or module yet, creating
this simple profile will be good practice. If nothing else, put the command
cd \ into the profile script, so that the shell always opens in the root of your
system drive. But please don’t do this on a computer that’s part of your com-
pany’s production network, because we haven’t covered all of the security
implications yet.

5.9 Common points of confusion
There’s exactly one thing that I frequently see PowerShell newcomers do incorrectly
when they start working with modules and snap-ins: they don’t read the help. Specifi-
cally, they don’t use the -example or -full switch when asking for help.

 Frankly, looking at any built-in examples is the best way to learn how to use a com-
mand. Yes, it can be a bit daunting to scroll through a list of hundreds of commands
(Exchange Server, for example, adds well over 400 new commands), but using Help
and Get-Command with wildcards should make it easier to narrow down the list to what-
ever noun you think you’re after. From there, read the help!
Download from Wow! eBook <www.wowebook.com>

60 CHAPTER 5 Adding commands

5.10 Lab
As always, I’m assuming that you have a Windows Server 2008 R2 computer or virtual
machine to test with, and that it’s configured as a domain controller. If you don’t,
revisit chapter 1, where I explain how you can download a mostly configured virtual
machine from Microsoft. You’ll just need to make that into a domain controller, and
in chapter 1, I directed you to a tutorial on that.

 For this lab, you only have one basic task: run a Best Practices Analyzer (BPA)
report for Directory Services and DNS Server, the two models that should be present
on your Windows Server 2008 R2 domain controller. BPA models can take a long time
to run, so be patient while the shell thinks—don’t get nervous and press Ctrl-C! Your
final result should be an HTML file containing a table that lists the results of the BPA
analysis.

 That’s all the help you get!

5.11 Ideas for on your own
Windows Server 2008 R2 contains numerous other modules that can help you auto-
mate administration. If you have some extra time, see if you can figure out how to
read individual settings from a Group Policy object. There’s a module that can do this,
although using it can be a bit complicated. Remember that a GPO is the top-level item
you’ll want to work with, and then you’ll want to dig into it to retrieve individual set-
tings. Settings within a GPO come in two forms: registry values and registry preference
values. The former are the GPO settings that a GPO can fully control.

 To experiment, you may want to create a new GPO in your test domain, link it to an
OU (you may even want to create an OU to link it to), and then change a few settings
within the GPO. You can do all of that with the GUI Group Policy Management Console
(GPMC), and then switch to PowerShell to try and query the individual settings. As
always, rely on the examples in the help files to get you started.

 This business of finding modules, locating their commands, reading the help, and
experimenting with commands is the single most important thing you’ll ever learn in
PowerShell. In fact, if you want to stop reading and spend a few days experimenting
with different commands, go right ahead. Teaching yourself new commands is abso-
lutely the most valuable PowerShell skill you can acquire.
Download from Wow! eBook <www.wowebook.com>

Objects: just data
by another name
We’re going to do something a little different in this chapter. I find that PowerShell’s
use of objects can be one of its most confusing elements, but at the same time it’s also
one of the shell’s most critical concepts, affecting everything you do in the shell. I’ve
tried different explanations over the years, and I’ve settled on a couple that each
work well for distinctly different audiences. So, if you have some programming expe-
rience and are comfortable with the concept of objects, I want you to skip to section
6.2. If you don’t have a programming background, and haven’t programmed or
scripted with objects before, start with section 6.1 and read straight through.

6.1 What are objects?
Stop for a second and run Get-Process in PowerShell. You should see a table with
several columns, but those columns barely scratch the surface of the wealth of infor-
mation available about processes. Each process also has a machine name, a main win-
dow handle, a maximum working set size, an exit code and time, processor affinity
information, and a great deal more. In fact, there are more than 60 pieces of infor-
mation associated with a process. Why does PowerShell show so few of them?

 The simple fact is that most of the things PowerShell can access offer more infor-
mation than will comfortably fit on the screen. When you run any command, such
as Get-Process, Get-Service, Get-EventLog, or anything, PowerShell con-
structs—entirely in memory—a table that contains all of the information about
those items. In the case of Get-Process, that table consists of something like 67 col-
umns, with one row for each process that’s running on your computer. Each col-
61

umn contains a bit of information, such as virtual memory, CPU utilization, process

Download from Wow! eBook <www.wowebook.com>

62 CHAPTER 6 Objects: just data by another name

name, process ID, and so on. Then, PowerShell looks to see if you have specified
which of those columns you want to see. If you haven’t (and I haven’t shown you how,
yet) then the shell looks up a configuration file provided by Microsoft and displays
only those table columns that Microsoft thought you’d want to see.

 One way to see all of the columns is to use ConvertTo-HTML:

Get-Process | ConvertTo-HTML | Out-File processes.html

That cmdlet doesn’t bother filtering down the columns, so it produces an HTML file
that contains all of them. That’s one way to see the entire table.

 In addition to all of those columns of information, each table row also has some
actions associated with it. Those are things that the operating system can do to, or
with, the process listed in that table row. For example, the operating system can close
a process, kill it, refresh its information, or wait for the process to exit, among other
things.

 Any time you run a command that produces output, that output takes the form of
a table in memory. When you pipe output from one command to another, like this,

Get-Process | ConvertTo-HTML

the entire table is passed through the pipeline. The table isn’t filtered down to a
smaller number of columns until every command has run.

 Now for some terminology changes! PowerShell doesn’t refer to this in-memory
table as a “table.” Instead, it uses these terms:

■ Object—This is what I’ve been calling a “table row.” It represents a single thing,
like a single process or a single service.

■ Property—This is what I called a “table column.” It represents one piece of infor-
mation about an object, like a process name, process ID, or service status.

■ Method—This is what I called an “action.” A method is related to a single object
and makes that object do something, like killing a process or starting a service.

■ Collection—This is the entire set of objects, or what I’ve been calling a “table.”

If you ever find the following discussion on objects to be confusing, refer back to this
four-point list. Always imagine a collection of objects as being a big in-memory table of
information, with properties as the columns and individual objects as the rows.

6.2 Why PowerShell uses objects
One of the reasons that PowerShell uses objects to represent data is that, well, you
have to represent data somehow, right? PowerShell could have chosen to store that data
in a format like XML, or perhaps its creators could have chosen to use plain-text
tables. There are some specific reasons why they didn’t, however.

 The first big reason is that Windows itself is an object-oriented operating system—or
at least, most of the software that runs on Windows is object oriented. Choosing to struc-
ture data as a set of objects is easy, because most of the operating system lends itself to

those structures.

Download from Wow! eBook <www.wowebook.com>

63Why PowerShell uses objects

 Another reason to use objects is because they ultimately make things easier on you
and give you more power and flexibility. For just a second, I want to pretend that Power-
Shell doesn’t produce objects as the output of its commands. Instead, it produces sim-
ple text tables, which is what you probably thought it was doing in the first place. When
you run a command like Get-Process, you’re getting formatted text as the output:

PS C:\> get-process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ ---- -----------
 39 5 1876 4340 52 11.33 1920 conhost
 31 4 792 2260 22 0.00 2460 conhost
 29 4 828 2284 41 0.25 3192 conhost
 574 12 1864 3896 43 1.30 316 csrss
 181 13 5892 6348 59 9.14 356 csrss
 306 29 13936 18312 139 4.36 1300 dfsrs
 125 15 2528 6048 37 0.17 1756 dfssvc
 5159 7329 85052 86436 118 1.80 1356 dns

What if you wanted to do something else with this information? Perhaps you want to
do something to all of the processes running Conhost. That means you’re going to
have to filter this list down a bit. In a Unix or Linux shell, you’d use a command like
Grep, telling it, “Look at this text list for me. Keep only those rows where columns
58–64 contain the characters ‘conhost.’ Delete all of the other rows.” The resulting list
would contain just those processes you specified:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ ---- -----------
 39 5 1876 4340 52 11.33 1920 conhost
 31 4 792 2260 22 0.00 2460 conhost
 29 4 828 2284 41 0.25 3192 conhost

You’d then pipe that text to another command, perhaps telling it to extract the pro-
cess ID from the list. “Go through this and get the characters from columns 52–56, but
drop the first two rows.” The result might be this:

1920
2460
3192

Finally, you’d pipe that text to yet another command, asking it to kill the processes (or
whatever else you were trying to do) represented by those ID numbers.

 This is, in fact, exactly how Unix and Linux administrators work. They spend a lot
of time learning how to get very good at parsing text, using tools like Grep, Awk, and
Sed, and becoming very proficient in the use of regular expressions, which make it
easier for them to define text patterns that they want their computer to look for. Unix
and Linux folks like programming languages like Perl because those languages con-
tain rich text-parsing and text-manipulation functions.

 There are, however, some problems with this text-based approach:
■ You can spend more time messing around with text than doing your real job.

Download from Wow! eBook <www.wowebook.com>

64 CHAPTER 6 Objects: just data by another name

■ If the output of a command changes—say, moving the ProcessName column to
the start of the table—then you have to rewrite all of your commands, because
they’re all dependent on things like column positions.

■ You have to become very proficient in languages and tools that parse text. Not
because your job actually involves parsing text, but because parsing text is a
means to an end.

PowerShell’s use of objects helps to remove all of that text-manipulation overhead.
Because objects work like a table in memory, you don’t have to tell PowerShell which
text column a piece of information is located at. Instead, you tell it the column name,
and PowerShell knows exactly where to go to get that data. Regardless of how you
arrange the final output on the screen or in a file, the in-memory table is always the
same, so you never have to rewrite your commands because a column moved. You
spend a lot less time on overhead tasks, and more time focusing on what it is you want
to accomplish.

 True, you do have to learn a few syntax elements that let you instruct PowerShell
properly, but you’ll have to learn a lot less than if you were working in a purely text-
based shell.

6.3 Discovering objects: Get-Member
If objects are like a giant table in memory, and PowerShell only ever shows you a por-
tion of that table on the screen, how can you see what else you have to work with? If
you’re thinking that you should use the Help command, then I’m glad, because I’ve
certainly been pushing that down your throat in the previous few chapters! Unfortu-
nately, you’d be wrong.

 The help system only documents background concepts (in the form of the “about”
help topics) and command syntax. To learn more about an object, you use a different
command: Get-Member. You should become very comfortable using this command—so
much so, in fact, that you start looking for a shorter way to type it. I’ll give you that right
now: the alias Gm.

 You can use Gm after any cmdlet that normally produces some output. For example,
you already know that running Get-Process produces some output on the screen.
You can pipe it to Gm:

Get-Process | Gm

Whenever a cmdlet produces a collection of objects, as Get-Process does, the entire
collection remains accessible until the end of the pipeline. It’s not until every com-
mand has run that PowerShell filters down the columns of information that are to be
displayed and creates the final text output that you see. Therefore, in the preceding
example, Gm has complete access to all of the process objects’ properties and methods,
because they haven’t been filtered down for display yet. Gm looks at each object and

constructs a list of the objects’ properties and methods. It looks a bit like this:

Download from Wow! eBook <www.wowebook.com>

65Object attributes, or “properties”

PS C:\> get-process | gm

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName
NPM AliasProperty NPM = NonpagedSystemMemo...
PM AliasProperty PM = PagedMemorySize
VM AliasProperty VM = VirtualMemorySize
WS AliasProperty WS = WorkingSet
Disposed Event System.EventHandler Disp...
ErrorDataReceived Event System.Diagnostics.DataR...
Exited Event System.EventHandler Exit...
OutputDataReceived Event System.Diagnostics.DataR...
BeginErrorReadLine Method System.Void BeginErrorRe...
BeginOutputReadLine Method System.Void BeginOutputR...
CancelErrorRead Method System.Void CancelErrorR...
CancelOutputRead Method System.Void CancelOutput...

I’ve trimmed the list a bit because it’s pretty long, but hopefully you get the idea.

TRY IT NOW Don’t take my word for it. This is the perfect time to start follow-
ing along and running the same commands that I do, so you can see their full
and complete output.

By the way, it may interest you to know that all of the properties, methods, and other
things attached to an object are collectively called its members, as if the object itself
were a country club and all of these properties and methods belonged to the club.
That’s where Get-Member takes its name from: it’s getting a list of the objects’ mem-
bers. Of course, because the PowerShell convention is to use singular nouns, the cmd-
let name is Get-Member, not “Get-Members.”

6.4 Object attributes, or “properties”
When you examine the output of Gm, you’ll notice several different kinds of properties:

■ ScriptProperty
■ Property
■ NoteProperty
■ AliasProperty

For your purposes, these are all the same. The only difference is how the values in
those properties are obtained, but that’s not something you need to worry about. To
you, they’re all “properties,” and you’ll use them the same way.

 A property always contains a value. For example, the value of a process object’s ID
property might be 1234, and the Name property of that object might have a value of
Notepad. Properties describe something about the object: its status, its ID, its name,

and so on. In PowerShell, properties are often read-only, meaning that you can’t

Download from Wow! eBook <www.wowebook.com>

66 CHAPTER 6 Objects: just data by another name

change the name of a service by assigning a new value to its Name property. You can,
however, retrieve the name of a service by reading its Name property. Probably 90 per-
cent of what you do in PowerShell will involve properties.

6.5 Object actions, or “methods”
Many objects support one or more methods, which, as I wrote earlier, are actions that
you can direct the object to take. A process object has a Kill method, which termi-
nates the process. Some methods require one or more input arguments that provide
additional detail for that particular action, but this early in your PowerShell education
you won’t be running into any of those. In fact, you may spend months or even years
working with PowerShell and never need to execute a single object method. That’s
because many of those actions are also provided by cmdlets.

 For example, if I need to terminate a process, I have three ways that I could do so.
One way would be to retrieve the object and then somehow execute its Kill method.
Another way would be to use a couple of cmdlets:

Get-Process -Name Notepad | Stop-Process

I could also accomplish that by using a single cmdlet:

Stop-Process -name Notepad

My focus with this book is entirely on using PowerShell cmdlets to accomplish tasks.
They provide the easiest, most administrator-centric, most task-focused way of accom-
plishing things. Using methods starts to edge into .NET Framework programming,
which can be more complicated and can require a lot more background information.
For that reason, you’ll rarely—if ever—see me execute an object method in this book.
In fact, my general philosophy at this point is, “If you can’t do it with a cmdlet, then go
back and use the GUI.” You won’t feel that way for your entire career, I promise, but
for now it’s a good way to stay focused on the “PowerShell way” of doing things.

6.6 Sorting objects
Most PowerShell cmdlets produce objects in a deterministic fashion, which simply
means that they tend to produce objects in the same order every time you run the

Above and beyond

You don’t really need to know about them at this stage in your PowerShell education,
but in addition to properties and methods, objects can also have events. An event is
an object’s way of notifying you that something happened to it. A process object, for
example, can trigger its Exited event when the process ends. You can attach your
own commands to those events, so that, for example, an email gets sent when a pro-
cess exits. Working with events in this fashion is a pretty advanced topic, and it’s
beyond the scope of this book.
command. Both services and processes, for example, are listed in alphabetical order

Download from Wow! eBook <www.wowebook.com>

67Selecting the properties you want

by name. Event log entries tend to come out in chronological order. What if you want
to change that?

 For example, suppose I want to display a list of processes, with the biggest consum-
ers of virtual memory (VM) at the top of the list, and the smallest consumers at the
bottom. I would need to somehow re-order that list of objects based on the VM prop-
erty. PowerShell provides a very simple cmdlet, Sort-Object, that does exactly that:

Get-Process | Sort-Object -property VM

TRY IT NOW I’m hoping that you’ll follow along and run the same commands
that I am. I won’t be pasting the output into the book because these tables are
pretty long, but you’ll get substantially the same thing on your screen if you’re
following along.

That isn’t exactly what I wanted. It did sort on VM, but it did so in ascending order,
with the largest values at the bottom of the list. Reading the help for Sort-Object, I
see that it has a -descending parameter that should reverse the sort order. I also
notice that the -property parameter is positional, so I don’t need to type the para-
meter name. I’ll also tell you that Sort-Object has an alias, Sort, so you can save your-
self a bit of typing for the next try:

Get-Process | Sort VM -desc

I also abbreviated -descending to -desc, and the result is exactly what I was looking
for. The -property parameter accepts multiple values (which I’m sure you saw in the
help file, if you looked).

 In the event that two processes are using the same amount of virtual memory, I’d
like them sorted by process ID, and this will accomplish that:

Get-Process | Sort VM,ID -desc

As always, a comma-separated list is the way to pass multiple values to any parameter
that supports them.

6.7 Selecting the properties you want
Another useful cmdlet is Select-Object. It accepts objects from the pipeline, and you
can specify the properties that you would like displayed. This enables you to access
properties that are normally filtered out by PowerShell’s configuration rules, or to
trim the list down to a few properties that interest you. This can be very useful when
piping objects to ConvertTo-HTML, because that cmdlet usually builds a table contain-
ing every property. Compare the results of these two commands:

Get-Process | ConvertTo-HTML | Out-File test1.html

Get-Process | Select-Object -property Name,ID,VM,PM |

➥ Convert-ToHTML | Out-File test2.html

TRY IT NOW Go ahead and run each of these commands separately, and then

examine the resulting HTML files in Internet Explorer to see the differences.

Download from Wow! eBook <www.wowebook.com>

68 CHAPTER 6 Objects: just data by another name

Take a look at the help for Select-Object (or you can use its alias, Select). The
-property parameter appears to be positional, which means I could shorten that last
command to this:

Get-Process | Select Name,ID,VM,PM | ConvertTo-HTML | Out-File test3.html

Spend some time experimenting with Select-Object. In fact, try variations of this
command, which allows the output to appear on the screen:

Get-Process | Select Name,ID,VM,PM

Try adding and removing different process object properties from that list and review-
ing the results. How many properties can you specify and still get a table as the out-
put? How many properties force PowerShell to format the output as a list rather than
as a table?

6.8 Objects until the very end
The PowerShell pipeline always contains objects, right until the last command has
been executed. At that time, PowerShell looks to see what objects are in the pipeline,
and then looks at its various configuration files to see which properties will be used to
construct the onscreen display. It also decides whether that display will be a table or a
list, based on some internal rules and on its configuration files. (I’ll explain more
about those rules and configurations, and how you can modify them, in chapter 8.)

 An important fact is that the pipeline can contain many different things over the
course of a single command line. For the next few examples, I’m going to take a single
command line and physically type it so that only one command appears on a single
line of text. That’ll make it a bit easier to explain what I’m talking about.

 Here’s the first one:

Get-Process |
Sort-Object VM -descending |
Out-File c:\procs.txt

In this example, I start by running Get-Process, which puts process objects into the
pipeline. The next command is Sort-Object. That doesn’t change what’s in the pipe-
line; it just changes the order of the objects, so at the end of Sort-Object, the pipe-
line still contains processes. The last command is Out-File. Here, PowerShell has to
produce output, so it takes whatever’s in the pipeline—processes—and formats them
according to its internal rule set. The results go into the specified file.

 Next up is a more complicated example:

Get-Process |
Sort-Object VM -descending |
Select-Object Name,ID,VM

This starts off in the same way. Get-Process puts process objects into the pipeline.
Those go to Sort-Object, which sorts them and puts the same process objects into the

pipeline. Select-Object works a bit differently, though. You see, a process object

Download from Wow! eBook <www.wowebook.com>

69Objects until the very end

always has the exact same members. In order to trim down the list of properties,
Select-Object can’t just remove the properties I don’t want, because the result
wouldn’t be a process object anymore. Instead, Select-Object creates a new kind of
custom object called a PSObject. It copies over the properties I do want from the pro-
cess, resulting in a custom object being placed into the pipeline.

TRY IT NOW Try running this three-cmdlet command line, keeping in mind
that you should type the whole thing on a single line. Notice how the output
is different from the normal output of Get-Process?

When PowerShell sees that it’s reached the end of the command line, it has to decide
how to lay out the text output. Because there are no longer any process objects in the
pipeline, PowerShell won’t use the default rules and configurations that apply to pro-
cess objects. Instead, it looks for rules and configurations for a PSObject, which is
what the pipeline now contains. Microsoft didn’t provide any rules or configurations
for PSObjects, because they’re meant to be used for custom output. So, PowerShell
takes its best guess and produces a table, on the theory that those three pieces of
information will still probably fit in a table. The table isn’t as nicely laid out as the nor-
mal output of Get-Process, though, because the shell lacks the additional configura-
tion information needed to make a nicer-looking table.

 You can use Gm to see the different objects that wind up in the pipeline. Remember,
you can stick Gm in after any cmdlet that produces output:

Get-Process | Sort VM -descending | gm
Get-Process | Sort VM -descending | Select Name,ID,VM | gm

TRY IT NOW Try running those two command lines separately, and notice the
difference in the output.

Notice that, as part of the Gm output, it shows you the type name for the object it saw in
the pipeline. In the first case, that was a System.Diagnostics.Process object, but in
the second case the pipeline contains a different kind of object. Those new “selected”
objects only contained the three properties specified—Name, ID, and VM—plus a cou-
ple of system-generated members.

 Even Gm produces objects and places them into the pipeline! After running Gm, the
pipeline no longer contained either process or the “selected” objects; it contained the
type of object produced by Gm: Microsoft.PowerShell.Commands.MemberDefinition.
You can prove that by piping the output of Gm to Gm itself:

Get-Process | Gm | Gm

TRY IT NOW You’ll definitely want to try this, and think hard about it to make
sure it makes sense to you. You start with Get-Process, which puts process
objects into the pipeline. Those go to Gm, which analyzes them and produces
its own MemberDefinition objects. Those are then piped to Gm, which ana-
lyzes them and produces output that lists the members of a Member-

Definition object.

Download from Wow! eBook <www.wowebook.com>

70 CHAPTER 6 Objects: just data by another name

A real key in mastering PowerShell is learning to keep track of what kind of object is in
the pipeline at any given point. Gm can help you do that, but sitting back and verbally
walking yourself through the command line is also a good exercise that can help clear
up confusion.

6.9 Common points of confusion
There are a few common mistakes that my classroom students tend to make as they
get started with PowerShell. Most of these go away with a little bit of experience, but
I’ll direct your attention to them so that you can catch yourself if you start heading
down the wrong path.

■ Remember that the PowerShell help files don’t contain information on objects’
properties. You’ll need to pipe the objects to Gm (Get-Member) to see a list of
properties.

■ Remember that you can add Gm to the end of any pipeline that normally produces
results. A command line like Get-Process -name Notepad | Stop-Process
doesn’t normally produce results, so tacking | Gm onto the end won’t produce
anything either.

■ Start paying attention to neat typing. Put a space on either side of every pipe-
line character, so that your command lines read like Get-Process | Gm and not
Get-Process|Gm. That spacebar key is extra-large for a reason—use it!

■ Always remember that the pipeline can contain different types of objects at
each step. Think about what type of object is in the pipeline, and focus on what
the next command will do to that type of object.

6.10 Lab
This chapter has probably covered more, and more difficult, new concepts than any
chapter so far. Hopefully I was able to make it all make sense, but these exercises
should help you cement everything. See if you can complete them all, and remember
that there are companion videos and sample solutions at MoreLunches.com. Some of
these tasks will draw on skills you learned in previous chapters, as a way of refreshing
your memory and keeping you sharp.

1 Identify a cmdlet that will produce a random number.
2 Identify a cmdlet that will display the current date and time.
3 What type of object does the cmdlet from task #2 produce? (What is the type

name of the object produced by the cmdlet?)
4 Using the cmdlet from task #2 and Select-Object, display only the current day

of the week in a table like this:

 DayOfWeek

 Monday
5 Identify a cmdlet that will display information about installed hotfixes.

Download from Wow! eBook <www.wowebook.com>

71Lab

6 Using the cmdlet from task #5, display a list of installed hotfixes. Sort the list by
the installation date, and display only the installation date, the user who
installed the hotfix, and the hotfix ID.

7 Repeat task #6, but this time sort the results by the hotfix description, and
include the description, the hotfix ID, and the installation date. Put the results
into an HTML file.

8 Display a list of the 50 newest entries from the Security event log (you can use a
different log, such as System or Application, if your Security log is empty). Sort
the list so that the oldest entries appear first, and so that entries made at the
same time are sorted by their index. Display the index, time, and source for
each entry. Put this information into a text file (not an HTML file, just a plain
text file).
Download from Wow! eBook <www.wowebook.com>

The pipeline, deeper
So far, you’ve learned to be pretty effective with PowerShell’s pipeline. Running
commands like Get-Process | Sort VM -desc | ConvertTo-HTML | Out-File
procs.html is pretty powerful, accomplishing in one line what used to take several
lines of script. But you can do even better! In this chapter, we’ll dig deeper into the
pipeline and uncover some of its most powerful capabilities.

7.1 The pipeline: enabling power with less typing
One of the reasons I like PowerShell so much is that it enables me to be a more
effective administrator without having to write complex scripts, like I used to have
to do in VBScript. But the key to powerful one-line commands lies in the way the
PowerShell pipeline works.

 Let me be clear: you could skip this chapter and still be effective with Power-
Shell, but you would in most cases have to resort to VBScript-style scripts and pro-
grams. Although PowerShell’s pipeline capabilities can be complicated, they’re
probably easier to learn than more-complicated programming skills, and by learn-
ing to really manipulate the pipeline, you can be much more effective without
needing to write scripts.

 The whole idea here is to get the shell to do more of your work for you, with as
little typing as possible. I think you’ll be surprised at how well the shell can do that!

7.2 Pipeline input ByValue, or why Stop-Service works
Let’s start by looking at a command that you’ve seen earlier in this book:

Get-Service -Name Bits | Stop-Service
72

Download from Wow! eBook <www.wowebook.com>

73Pipeline input ByValue, or why Stop-Service works

This command retrieves a single service, named BITS (it’s the Background Intelligent
Transfer Service, and I like to play with it in these examples because starting and stop-
ping it won’t wreck the operating system). It pipes that service to the Stop-Service
cmdlet, which attempts to stop the service. Easy enough to understand, but why,
exactly, does it work?

 Let’s start by carefully examining the output of Get-Service, by piping that output
to Get-Member (or its alias, Gm):

PS C:\> get-service | gm

 TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition
---- ---------- ----------
Name AliasProperty Name = ServiceName
RequiredServices AliasProperty RequiredServices = Service...

That output tells me that the Get-Service cmdlet is producing objects of the type
System.ServiceProcess.ServiceController. Because PowerShell’s type names tend
to be so long, it’s common to refer to them by the last component of the type name.
In this case, that would be ServiceController, so we can say that Get-Service is pro-
ducing ServiceController objects.

 Now, let’s look at the help for Stop-Service.

TRY IT NOW I’m not going to paste the help for Stop-Service into this
book—go ahead and run Help Stop-Service yourself, and follow along with
what I’m describing.

There are three variants of Stop-Service, or three parameter sets (if you forget what a
parameter set is, reread chapter 3). Each parameter set seems to provide a different
way of specifying the service or services that I want to stop:

■ The first parameter set includes a mandatory -Name parameter, meaning that I
could just specify the service name (or names) I want stopped.

■ The second parameter set features a mandatory -DisplayName parameter, giv-
ing me another way of specifying the service (or services) I want to stop.

■ The third parameter set includes an -InputObject parameter that accepts val-
ues of the type ServiceController. That means the -InputObject parameter
can accept, as its value, the type of object produced by Get-Service.

Above and beyond

Because mastering the help files is such an important PowerShell skill, I want to take
a second to focus on some unrelated things in the help file. You’re free to skip this
brief discussion if you want to, but be sure to come back to it later.
Download from Wow! eBook <www.wowebook.com>

74 CHAPTER 7 The pipeline, deeper

Now look at the full help, by running Help Stop-Service -full. Scroll down until
you get to the help for the -InputObject parameter, because I want to look at that in
a bit more detail.

 Notice that the parameter explanation for -InputObject indicates that it isn’t
required (after all, you could choose to specify a name or display name instead). It’s a
named parameter, which means that if you choose to use it, you must type the param-
eter name. And, most importantly for the current discussion, this parameter accepts
pipeline input ByValue.

 When you run a command like Get-Service -name BITS | Stop-Service, Power-
Shell executes the commands in order. Get-Service produces those ServiceCon-
troller objects, and then pipes them to Stop-Service. PowerShell knows that a
cmdlet can only accept input via a parameter, so there’s nothing magic associated with
piping things from one cmdlet to another. The piped input must be assigned to a
parameter of the next cmdlet in order for everything to work, so the shell has to look
at all of the parameters for the next cmdlet (Stop-Service), and figure out which
parameter will accept the objects that have been piped in.

 PowerShell starts by looking at the type of object that’s being piped. In this case,
we know the objects are of the type ServiceController, because we used Gm to dis-
cover that fact. Next, the shell looks to see if any parameters of the next cmdlet are
willing to accept that type of object from the pipeline, meaning that the shell looks to

(continued)

Of the three parameter sets for Stop-Service, the first two have a first parameter
that accepts string values. Let’s say you ran the command Stop-Service BITS. Pow-
erShell needs to decide which of the three parameter sets you’ve used. You didn’t
specify a parameter name, so that eliminates the second parameter set, because it
doesn’t contain any positional parameters (you’ll notice that -DisplayName is man-
datory, and the parameter name itself isn’t in square brackets, meaning that if you
choose to specify a display name you must type the -DisplayName parameter name).
Because you provide a string, and not a ServiceController, PowerShell knows that
you must be intending to use the first parameter set, and so it interprets the value
in the first position of your command (BITS) as the value for the -Name parameter.

There’s no way that this cmdlet’s designer could have made -DisplayName positional
(meaning that you wouldn’t have to type the -DisplayName parameter name, and
could just provide a value for it). Doing so would have created two parameter sets
that each accepted a string in the first position, and PowerShell wouldn’t have been
able to tell which one you were trying to use.

These subtle hints from the help file can, once you get used to interpreting them, make
it easier to use cmdlets more effectively. Now you know that you can specify the display
name of a service you want to start, but if you choose to do so, you’ll have to explicitly
identify it with the -DisplayName parameter name.
see if any parameters accept values of type ServiceController and are willing to

Download from Wow! eBook <www.wowebook.com>

75Pipeline input ByValue, or why Stop-Service works

accept that input ByValue from the pipeline. In this instance, PowerShell discovers
that the -InputObject parameter of Stop-Service is willing to accept values of the
type ServiceController, from the pipeline, ByValue. So the ServiceController
objects generated by Get-Service are passed to the -InputObject parameter of
Stop-Service, which uses those to identify the services we want stopped. So when we
say that “a parameter accepts pipeline input ByValue,” we’re really saying “the param-
eter will accept incoming objects from the pipeline, so long as those objects match up
to the type of value the parameter is designed to accept.”

 Frankly, I found all that to be a bit confusing the first time someone explained it
to me, so let’s walk through a few more examples. Start by explaining to yourself why
this works:

"BITS","MSISCSI" | Start-Service

 Here’s how I walk myself through the explanation:

1 I didn’t run a command to put objects in the pipeline. Instead, I manually typed
some strings and piped them to the next cmdlet. So the type of object in the
pipeline is String.

2 Running Help Start-Service -full, I see that the -InputObject and -Name
parameters accept pipeline input ByValue. So my strings will attach to one of
those two parameters.

3 Of those two, only the -Name parameter accepts String values, so my strings will
attach to -Name. Therefore, Start-Service will assume that the strings I’ve
piped in are service names, and it will try to start services having those names.

Next, see if you can figure out whether or not this will work (don’t actually run the
command—just see if you can figure out the explanation):

Get-Process -name b* | Stop-Service

Again, here’s the explanation I would come up with:

1 Get-Process is putting something into the pipeline. I would run Get-Process
| Gm to discover that the objects generated by Get-Process are of the type
Process (technically, System.Diagnostics.Process).

2 Looking at the full help for Stop-Service, I see that both -Name and -Input-
Object are capable of accepting pipeline input by value.

3 Neither -Name nor -InputObject accept values of the type Process, so I would
conclude that the preceding command wouldn’t work, because Stop-Service
has no way of accepting the piped-in objects.

That conclusion is correct for as far as we’ve gotten in this chapter, although we’re
going to revisit that example later. You’ll find that it actually does do something,
although it might not be what you want.

 Here’s one final example for you to try to explain:
"conhost" | Stop-Process

Download from Wow! eBook <www.wowebook.com>

76 CHAPTER 7 The pipeline, deeper

And here’s my explanation:

1 I put an object of type String into the pipeline. You could confirm that by run-
ning "conhost" | Gm.

2 I see that Stop-Process has only one parameter that accepts pipeline input
ByValue, and that’s -InputObject.

3 -InputObject accepts objects of type Process, and not of type String, so I con-
clude that this command will not work.

That turns out to be a correct conclusion.

7.3 Parentheses instead of pipelines
The pipeline is only one way to get information into a parameter. You can manually
type a simple value like a name or an ID number. But as you’ve seen in some earlier
examples, you can also take the output of one cmdlet and send that output to the
parameter of another cmdlet without using the pipeline.

 For example, take a look at the full help for Get-Service, and specifically at the
help for its -computerName parameter. You’ll notice that this parameter accepts pipe-
line input, but it doesn’t do so ByValue. That means I could not pipe in a list of com-
puter names like this:

Get-Content c:\names.txt | Get-Service

If I ran that command, here’s what would happen:

1 Get-Content puts objects of type String into the pipeline. I can confirm that by
running Get-Content c:\names.txt | Gm (the assumption is that Names.txt
contains a list of computer names, with one name per line).

2 I see that Get-Service can accept pipeline input ByValue for its -InputObject
and -Name parameters. Of these, -Name accepts values of type String.

3 Get-Service will accept what is in Names.txt as service names and will try to
retrieve those services. It won’t treat the names as computer names, which was
my intent. So the command will run, but I won’t get the results I wanted.

That doesn’t mean I can’t do what I wanted, but it does mean I can’t provide the input
to the -computerName parameter through the pipeline. Instead, I can use parentheses.

 Just like in math class, parentheses change the order in which execution occurs. In
the case of math, it’s the order in which mathematical expressions are evaluated. In
the case of PowerShell, parentheses force the shell to execute certain commands
before others.

 I already know that the -computerName parameter of Get-Service can accept mul-
tiple string values, because the cmdlet’s help lists this:

-ComputerName <string[]>
Download from Wow! eBook <www.wowebook.com>

77Pipeline input ByPropertyName

Those back-to-back square brackets after string are your clue that multiple values are
accepted. Therefore, any command that outputs multiple string values can serve as
input to the -computerName parameter:

Get-Service -computerName (Get-Content c:\names.txt)

This use of parentheses is a powerful trick for combining commands. You’re telling
the -computerName parameter, “I want you to accept the output of this subcommand,
which I have put into parentheses, as your input values.” You’ll see this again in a
more complex example, later in this chapter.

7.4 Pipeline input ByPropertyName
If you’ve been following along and reading the cmdlet help files, you probably
noticed a second type of pipeline input. In addition to ByValue, some cmdlets also
accept pipeline input ByPropertyName. This second pipeline input mode is a bit
more complicated, but it’s also very powerful.

 The first thing to know is that ByPropertyName mode only works if ByValue mode does
not. PowerShell always tries to work with pipeline input ByValue if it can, a process
sometimes called pipeline parameter binding ByValue. When ByValue doesn’t turn up any
opportunities, PowerShell shifts modes and tries pipeline parameter binding ByProperty-
Name. In this mode, the shell looks at the individual properties of the objects in the
pipeline and sees if any of those properties’ names happen to match the names of
parameters on the next cmdlet. (It only looks at parameters that list “Accept pipeline
input: ByPropertyName” in the cmdlets’ help.) If it finds matches, the values from
those properties are assigned to the parameters that have matching names.

 Let’s review this example again:

Get-Process -name b* | Stop-Service

Here’s the explanation I would come up with:

1 Get-Process is putting something into the pipeline. I would run Get-Process
| Gm to discover that the objects generated by Get-Process are of type Process
(technically, System.Diagnostics.Process).

2 Looking at the full help for Stop-Service, I see that both -Name and -Input-
Object are capable of accepting pipeline input by value.

3 Neither -Name nor -InputObject can accept process objects, so ByValue param-
eter binding ceases. The shell will now try ByPropertyName.

4 The -Name parameter is the only one listed as accepting pipeline input
ByPropertyName.

5 The objects in the pipeline happen to have a Name property, meaning that there

is a match between the property name and the -Name parameter name.

Download from Wow! eBook <www.wowebook.com>

78 CHAPTER 7 The pipeline, deeper

6 The values of the Name properties of the objects in the pipeline—the process
names—are assigned to the -Name parameter of Get-Service. This happens
because the property names and the parameter name are the same.

7 Get-Service will attempt to stop services, assuming that the process names are
the same as service names. That isn’t often the case, so it won’t stop many ser-
vices. The BITS service, for example, runs as process name svchost, so attempt-
ing to stop the service named “svchost” won’t have any effect.

This can be a bit confusing to follow, but it’s a powerful technique. Let’s look at a real-
world example.

QUICK REFERENCE I’ve included a chart in chapter 28 that can help make
sense of the pipeline parameter binding process.

7.5 Creating new AD users, fast and easy
If you plan to follow along in this section—and I hope you will—you’re going to need
to be on a Windows Server 2008 R2 domain controller, or on a Windows 7 computer
that has the Remote Server Administration Tools (RSAT) installed, and which is a
member of an Active Directory domain that you’re allowed to test in and experiment
with. We’re going to be creating new users, so be sure you’re running the shell as a
user that has permission to do so (such as a Domain Admin).

 Start by loading the ActiveDirectory module into the shell (leave the shell open
when you’re done with this example, because you’ll use the ActiveDirectory module
later in this chapter):

Import-Module ActiveDirectory

TRY IT NOW Make sure you can load this module before proceeding. If you
can’t, then you don’t have the ActiveDirectory module. It only comes with
Windows Server 2008 R2, although the RSAT can be used to install it on Win-
dows 7 (but not earlier versions of Windows). Be sure you’re either on a test
domain controller, or that your Windows 7 computer is a member of a test
domain. You don’t want to run the following commands in a production domain!

Next, use Windows Notepad or Microsoft Office Excel to create a comma-separated
values (CSV) file. It’s important that you get the column names exactly correct (I’ll
explain why in a bit). You should also include three to four rows of sample data for
new users. Here’s my file:

samAccountName,Name,Department,City,Title,GivenName,SurName
DonJ,DonJ,IT,Las Vegas,CIO,Don,Jones
GregS,GregS,Janitorial,Denver,Custodian,Greg,Shields
JeffH,JeffH,IT,Syracuse,Technician,Jeffery,Hicks
ChrisG,ChrisG,Finance,Las Vegas,Accountant,Christopher,Gannon

Those are all good friends, by the way—Greg always gets to be the janitor in these lit-
tle examples.
Download from Wow! eBook <www.wowebook.com>

79Creating new AD users, fast and easy

 Save the file as C:\Users.csv, and if you’re using Notepad, don’t forget to surround
the entire file path and name with quotation marks, so that Notepad won’t add the
.txt filename extension. This example won’t work if the file is named C:\Users.csv.txt
(and remember that Explorer will hide the .txt filename extension by default).

TIP In PowerShell, run notepad c:\users.csv. If the file doesn’t exist, Note-
pad will offer to create it, and it won’t tack on the .txt filename extension.

Now, look at the full help for the New-ADUser cmdlet. Specifically, pay attention to
which parameters accept pipeline input ByPropertyName and which ones accept pipe-
line input ByValue. You should come to the conclusion that nearly every parameter
will work ByPropertyName, and not a single one of them supports ByValue. Remem-
ber that—we’ll come back to it in a minute.

 Now, use Import-CSV to load that newly created CSV file into the shell. Just let it
display its information on the screen:

PS C:\> import-csv users.csv

samAccountName : DonJ
Name : DonJ
Department : IT
City : Las Vegas
Title : CIO
GivenName : Don
SurName : Jones

samAccountName : GregS
Name : GregS
Department : Janitorial
City : Denver
Title : Custodian
GivenName : Greg
SurName : Shields

Your output should contain all of the users that you entered into the CSV file. Here’s
what happened: Import-CSV translates the CSV file, breaking out each column and
row for you. It constructs an object for each row in the file, and each column in the
file becomes a property of those objects. I had four users in the file, so Import-CSV
generated four objects. Each object has properties named after the columns in the
CSV file’s header row.

 Piping the output to Gm confirms this analysis:

PS C:\> import-csv users.csv | gm

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

Download from Wow! eBook <www.wowebook.com>

80 CHAPTER 7 The pipeline, deeper

GetType Method type GetType()
ToString Method string ToString()
City NoteProperty System.String City=Las Vegas
Department NoteProperty System.String Department=IT
GivenName NoteProperty System.String GivenName=Don
Name NoteProperty System.String Name=DonJ
samAccountName NoteProperty System.String samAccountName=DonJ
SurName NoteProperty System.String SurName=Jones
Title NoteProperty System.String Title=CIO

You can see that the object is of type PSCustomObject, and it has (in addition to a few
system-generated methods) a property for each column in my CSV file: City, Depart-
ment, GivenName, and so forth.

 Now for the magic: go back to the help for New-ADUser. Considering each of the
seven properties in my CSV file, can you find parameters of New-ADUser that match
those property names and that accept pipeline input ByPropertyName?

 You should be able to identify all seven properties as matching parameter names of
New-ADUser, and all seven of those parameters accept pipeline input ByProperty-
Name. That means I can run the following command and it should work:

Import-CSV c:\names.csv | New-ADUser

It might not work if those users already exist (if you run the command a second time,
for example), but in a fresh test domain it should work fine. The users will be created
in the default Users container. If you wanted them to be created elsewhere, say in a
Sales OU, you could have run this instead:

Import-CSV c:\names.csv | New-ADUser -path "OU=Sales,dc=Company,dc=pri"

It’s perfectly acceptable to specify some parameters manually, with others being set
through the pipeline.

 Here are some other notes:

■ You can include as many columns as you want in that CSV file, provided each
column name exactly matches a parameter of New-ADUser.

■ You can have extraneous columns in the CSV file. If they don’t match a parame-
ter of New-ADUser, they’ll be ignored.

■ You can manually specify any parameter you like; whatever value you provide
will override anything coming in from the pipeline for that parameter, and your
value will be effective for every new user that’s created.

As you can see, this is an extremely powerful technique! You’ve created any number of
new users with little effort. Assuming you can get someone else to hand you that CSV
file—say, the Human Resources department—then a single command line turns that
data into new user accounts!

 This really demonstrates PowerShell’s flexibility: with very little typing, you’ve auto-
mated something that could have taken hours, depending on the number of users you
had to manually create. With PowerShell, one user or one hundred users can be cre-

ated in a couple of seconds.

Download from Wow! eBook <www.wowebook.com>

81When things don’t line up: custom properties

7.6 When things don’t line up: custom properties
Speaking of the Human Resources department, what are the odds that they’ll give you
a properly formatted CSV file every time? Remember that ByPropertyName only works
if the CSV column names exactly match those parameter names—will HR get it right
every time? Possibly not. Possibly, you’ll get a CSV that looks like this instead:

LoginName,Department,City,Title,FirstName,LastName
DonJ,IT,Las Vegas,CIO,Don,Jones
GregS,Janitorial,Denver,Custodian,Greg,Shields
JeffH,IT,Syracuse,Technician,Jeffery,Hicks
ChrisG,Finance,Las Vegas,Accountant,Christopher,Gannon

Obviously, you could rename columns yourself. You’d have to add a column to each
line, though, because AD needs both a samAccountName property and a Name property,
and those usually match. This file only has one column. But there’s no need to do any
of that manually: let’s make PowerShell do the hard work for us.

 We’re going to use a cmdlet that you’ve seen before, Select-Object. But rather
than just selecting existing properties to use, we’re going to have it create brand-new
properties for us as well. I want to acknowledge in advance that the syntax for doing
this is really, really ugly, but if you can memorize it (or jot it down into a notepad for
future reference), you’ll find a number of places where it can be used.

 For each new property that we create, we need to provide a property name, or
label, and a value for the property, which is specified in an expression. “Label” is gen-
erally abbreviated as a lowercase “L,” and the expression as a lowercase “e.” We’re
happy with the Department, City, and Title columns in the CSV file, but we need to
create Surname, GivenName, samAccountName, and Name. The latter two need to
both pull from the LoginName column we’ve been given in the CSV file. Here we go:

TRY IT NOW If you create a CSV file like the one I’ve listed above, and name it
C:\users2.csv, you’ll be able to follow along with this command. Also note that
I’m going to break this command onto several lines, both to make it fit in the
book and for easier reading, but this should all be typed as a single, long com-
mand on a single line. Notice that the user names are the same as the previ-
ous example, so if you’ve already created these users, delete them from the
domain before proceeding.

Import-CSV c:\users2.csv |

➥ Select-Object *,@{l='samAccountName';e={$_.LoginName}},
 ➥ @{l='Name';e={$_.LoginName}},
 ➥ @{l='GivenName';e={$_.FirstName}},
 ➥ @{l='Surname';e={$_.LastName}}

TRY IT NOW Be cautious when typing—those are lowercase “L” letters, not the
number 1.

Notice with Select-Object that I started by specifying * in the property list. That will
select all properties that the objects already have, meaning all of the CSV file’s col-

umns will show up in the output. I then specified four new columns by creating four

Download from Wow! eBook <www.wowebook.com>

82 CHAPTER 7 The pipeline, deeper

specially formatted constructs called hashtables. The Select-Object cmdlet is specifi-
cally designed to accept this kind of construct. Each hashtable consists of two ele-
ments, and each element has both a key and a value. For the L, or Label key, the value
is the name of the new property I want to add. For the E, or Expression key, the value
is what’s called a script block. Enclosed in curly braces, like { }, this script block tells
PowerShell how to create the value for that property. PowerShell would also permit
the use of N or Name instead of L or Label.

 Inside that expression, PowerShell lets us use a special placeholder: $_ (often pro-
nounced as dollar underscore or dollar underbar). When the command runs, PowerShell
will fill in this placeholder with the objects that were piped into Select-Object.
Therefore, $_ will represent the rows from the CSV file. After the underscore, I’ve
typed a period, which tells the shell that I don’t want to refer to the entire row from
the CSV file, but rather to access a single property (or column). This is how I created a
new property called samAccountName and had it pull over the value from the CSV file’s
LoginName column.

 Again, I realize that there’s a lot of punctuation flying around in that example, but
this is honestly one of the trickiest, most punctuation-intensive things you’ll see in this
book. If you can spend enough time looking at this example to become familiar with
it, and be very careful when you’re typing, this is a pattern that you’ll be able to adapt
and re-use in your own projects without too much pain.

 The output of the previous command should be a revised list of objects, listing both
the properties from the CSV file as well as the four additional properties I specified. If
you’re satisfied with that output, the only remaining step is to send it to New-ADUser:

Import-CSV c:\users2.csv |

➥ Select-Object *,{l='samAccountName';e={$_.LoginName}},
 ➥ {l='Name';e={$_.LoginName}},
 ➥ {l='GivenName';e={$_.FirstName}},
 ➥ {l='Surname';e={$_.LastName}} |
➥ New-ADUser

Notice that I didn’t include New-ADUser the first time, which let me preview the out-
put of Select-Object and make sure that it was what I wanted. I could then go back
and tweak it a bit, if I wanted, and not pipe everything to New-ADUser until I was com-
pletely satisfied with the results.

7.7 Extracting the value from a single property
Earlier in this chapter, I showed you an example of using parentheses to execute Get-
Content, feeding its output to the parameter of another cmdlet:

Get-Service -computerName (Get-Content names.txt)

Rather than getting your computer names from a static text file, you might well want
to query them from Active Directory. With the ActiveDirectory module (which hope-
fully you still have loaded from the previous examples in this chapter), you could

query all of your domain controllers:

Download from Wow! eBook <www.wowebook.com>

83Lab

get-adcomputer -filter * -searchbase "ou=domain controllers,

➥ dc=company,dc=pri"

Could you use the same parentheses trick? For example, would this work?

Get-Service -computerName (Get-ADComputer -filter *

➥ -searchBase "ou=domain controllers,dc=company,dc=pri")

Sadly, it won’t. Look at the help for Get-Service, and you’ll see that the -computer-
Name parameter expects String values.

 Run this instead:

get-adcomputer -filter * -searchbase "ou=domain controllers,

➥ dc=company,dc=pri" | gm

Get-Member reveals that Get-ADComputer is producing objects of the type ADComputer.
Those aren’t String objects, so -computerName won’t know what to do with them. The
ADComputer objects do have a Name property, however. What we need to do is somehow
extract just the values of the objects’ Name properties, and feed those values, which are
computer names, to the -ComputerName parameter.

 Once again, the Select-Object cmdlet can rescue us. It includes an -expandProp-
erty parameter, which accepts a property name. It will take that property and extract
its values, and return just those values as the output of Select-Object. Try this:

get-adcomputer -filter * -searchbase "ou=domain controllers,

➥ dc=company,dc=pri" | Select-Object -expand name

You should get a simple list of computer names. Those can be fed to the -computer-
Name parameter of Get-Service (or any other cmdlet that has a -computerName
parameter):

Get-Service -computerName (get-adcomputer -filter *

➥ -searchbase "ou=domain controllers,dc=company,dc=pri" |
➥ Select-Object -expand name)

Again, this is a cool trick that makes it possible to combine an even wider variety of com-
mands with each other, saving you typing and making PowerShell do more of the work.

7.8 Lab
Once again, we’ve covered a lot of important concepts in a short amount of time. The
best way to cement your new knowledge is to put it to immediate use. I recommend
doing the following tasks in order, because they build on each other to help remind
you of what you’ve learned and to help you find practical ways to use that knowledge.
Complete these tasks:

1 Would the following command work to retrieve a list of installed hotfixes from
all domain controllers in the specified domain? Why or why not? Write out an
explanation, similar to the ones I provided earlier in this chapter.

Get-Hotfix -computerName (get-adcomputer -filter *
➥ -searchbase "ou=domain controllers,dc=company,dc=pri" |
➥ Select-Object -expand name)

Download from Wow! eBook <www.wowebook.com>

84 CHAPTER 7 The pipeline, deeper

2 Would this alternative command work to retrieve the list of hotfixes from the
same computers? Why or why not? Write out an explanation, similar to the ones
I provided earlier in this chapter.

get-adcomputer -filter *

➥ -searchbase "ou=domain controllers,dc=company,dc=pri" |
➥ Get-HotFix

3 Would this third version of the command work to retrieve the list of hotfixes
from the domain controllers? Why or why not? Write out an explanation, simi-
lar to the ones I provided earlier in this chapter.

get-adcomputer -filter *

➥ -searchbase "ou=domain controllers,dc=company,dc=pri" |
➥ Select-Object @{l='computername';e={$_.name}} |
➥ Get-Hotfix

4 Write a command that uses pipeline parameter binding to retrieve a list of run-
ning processes from every computer in an AD domain. Don’t use parentheses.

5 Write a command that retrieves a list of installed services from every computer
in an AD domain. Don’t use pipeline input; instead use a parenthetical com-
mand (a command in parentheses).

6 Sometimes Microsoft forgets to add pipeline parameter binding to a cmdlet.
For example, would the following command work to retrieve information from
every domain controller in the domain? Write out an explanation, similar to the
ones I provided earlier in this chapter.

get-adcomputer -filter *

➥ -searchbase "ou=domain controllers,dc=company,dc=pri" |
➥ Select-Object @{l='computername';e={$_.name}} |
➥ Get-WmiObject -class Win32_BIOS
Download from Wow! eBook <www.wowebook.com>

Formatting—and why
it’s done on the right
Let’s quickly review: you know that PowerShell cmdlets produce objects, and that
those objects often contain more properties than PowerShell shows by default. You
know how to use Gm to get a list of all of an object’s properties, and you know how to
use Select-Object to specify the properties you want to see. Up to now, you’ve
relied on PowerShell’s default configuration and rules to determine how the final
output will appear on the screen (or in a file, or in hardcopy form). In this chapter,
you’ll learn to override those defaults and create your own formatting for your
commands’ output.

8.1 Formatting: making what you see prettier
I don’t want to give you the impression that PowerShell is a full-fledged manage-
ment reporting tool, because it isn’t. But PowerShell has good capabilities for col-
lecting information about computers, and, with the right output, you can certainly
produce reports using that information. The trick, of course, is getting the right
output, and that’s what formatting is all about.

 On the surface, PowerShell’s formatting system can seem pretty easy to
use—and for the most part that’s true. But the formatting system also contains
some of the trickiest “gotchas” in the entire shell, so I want to make sure you really
understand how it works and why it does what it does. I’m not just going to show
you a few new commands here, but rather explain how the entire system works,
how you can interact with it, and what limitations you might run into.
85

Download from Wow! eBook <www.wowebook.com>

86 CHAPTER 8 Formatting—and why it’s done on the right

8.2 About the default formatting
Run our old friend Get-Process again, and pay special attention to the column head-
ers. Notice that they don’t exactly match the property names. Instead, they each have
a specific width, alignment, and so forth. All that configuration stuff has to come from
someplace, right? You’ll find it in one of the .format.ps1xml files that install with
PowerShell. Specifically, formatting directions for process objects are in DotNetTypes
.format.ps1xml.

TRY IT NOW You’ll definitely want to have PowerShell open so that you can
follow along with what I’m about to show you. This will really help you under-
stand what the formatting system is up to under the hood.

Start by changing to the PowerShell installation folder and opening DotNetTypes
.format.ps1xml. Be careful not to save any changes to this file! It’s digitally signed, and
any changes that you save—even a single carriage return or space added to the
file—will break the signature and prevent PowerShell from using the file.

PS C:\>cd $pshome
PS C:\>notepad dotnettypes.format.ps1ml

Next, find out the exact type of object returned by Get-Process:

PS C:\>get-process | gm

 Now follow these steps:

1 Copy and paste the complete type name, System.Diagnostics.Process, to the
clipboard. Do to so, use your cursor to highlight the type name, and press
Return to copy it to the clipboard.

2 Switch over to Notepad and press Ctrl-F to open the Find window.
3 In the Find window, paste in the type name you copied to the clipboard. Click

Find Next.
4 The first thing you find will

probably be a Process-

Module object, not a
Process object, so click
Find Next again and again
until you locate System

.Diagnostics.Process in
the file. Figure 8.1 shows
what you should have
found.

What you’re now looking at in
Notepad is the set of directions
that govern how a process is dis- Figure 8.1 Locating the Process view in Windows

played by default. Scroll down a Notepad

Download from Wow! eBook <www.wowebook.com>

87About the default formatting

bit, and you’ll see the definition for a table view, which you should expect because you
already know that processes display in a multicolumn table. You’ll see the familiar col-
umn names, and if you scroll down a bit more you’ll see where the file specifies which
property will display in each column. You’ll see definitions for column widths and align-
ments too. When you’re done browsing, close Notepad, being careful not to save any
changes that you may have accidentally made to the file, and go back to PowerShell.

 When you run Get-Process, here’s what happens in the shell:

1 The cmdlet places objects of the type System.Diagnostics.Process into the
pipeline.

2 At the end of the pipeline is an invisible cmdlet called Out-Default. It’s always
there, and its job is to pick up whatever objects are in the pipeline after all of
your commands have run.

3 Out-Default passes the objects to Out-Host, because the PowerShell console is
designed to use the screen (called the host) as its default form of output. In the-
ory, someone could write a shell that uses files or printers as the default output
instead, but nobody has that I know of.

4 Most of the Out- cmdlets are incapable of working with normal objects. Instead,
they’re designed to work with special formatting instructions. So when Out-
Host sees that it has been handed normal objects, it passes them to the format-
ting system.

5 The formatting system looks at the type of the object and follows an internal set
of formatting rules (we’ll cover those in a moment). It uses those rules to pro-
duce formatting instructions, which are passed back to Out-Host.

6 Once Out-Host sees that it has formatting instructions, it follows those instruc-
tions to construct the onscreen display.

All of this happens whenever you manually specify an Out- cmdlet, too. For example,
run Get-Process | Out-File procs.txt, and Out-File will see that you’ve sent it
some normal objects. It will pass those to the formatting system, which creates format-
ting instructions and passes them back to Out-File. Out-File then constructs the text
file based on those instructions. So the formatting system becomes involved anytime
objects need to be converted into human-readable textual output.

 What rules does the formatting system follow in step 5, above? For the first format-
ting rule, the system looks to see if the type of object it’s dealing with has a predefined
view. That’s what you saw in DotNetTypes.format.ps1xml: a predefined view for a
Process object. There are a few other .format.ps1xml files installed with PowerShell,
and they’re all loaded by default when the shell starts. You can create your own pre-
defined views as well, although doing so is beyond the scope of this book.

 The formatting system looks for predefined views that specifically target the object
type it’s dealing with—meaning that in this case it’s looking for the view that handles

System.Diagnostics.Process objects.

Download from Wow! eBook <www.wowebook.com>

88 CHAPTER 8 Formatting—and why it’s done on the right

What if there is no predefined view? For example, try running this:

Get-WmiObject Win32_OperatingSystem | Gm

Grab that object’s type name (or at least the “Win32_OperatingSystem” part), and try
to find it in one of the .format.ps1xml files. I’ll save you some time by telling you that
you won’t find it.

 This is where the formatting system takes its next step, or what I call the second for-
matting rule: it looks to see if anyone has declared a default display property set for that
type of object. You’ll find those in a different configuration file, Types.ps1xml. Go
ahead and open it in Notepad now (again, be careful not to save any changes to this
file) and use the Find function to locate Win32_OperatingSystem. Once you do, scroll
down a bit and you’ll see DefaultDisplayPropertySet. It’s shown in figure 8.2. Make
a note of the six properties listed there.

 Now, go back to PowerShell and run this:

Get-WmiObject Win32_OperatingSystem

Do the results look familiar? They should: the properties you see are there solely
because they’re listed as defaults in Types.ps1xml. If the formatting system finds a
default display property set, it will use that set of properties for its next decision. If it
doesn’t find one, the next decision will consider all of the object’s properties.

 That next decision—the third formatting rule—is about what kind of output to
create. If the formatting system will display four or fewer properties, it will use a table.
If there are five or more properties, it will use a list. That’s why the
Win32_OperatingSystem object wasn’t displayed as a table: there were six properties,
triggering a list. The theory is that more than four properties might not fit well into an
ad hoc table without truncating information.

 Now you know how the default formatting works. You also know that most Out-

Figure 8.2 Locating a
DefaultDisplayPropertySet
in Notepad
cmdlets will automatically trigger the formatting system, so that they can get the

Download from Wow! eBook <www.wowebook.com>

89Formatting tables

formatting instructions they need. Next let’s look at how we can control that
formatting system ourselves, and override the defaults.

8.3 Formatting tables
There are four formatting cmdlets in PowerShell, and we’ll work with the three that
provide the most day-to-day formatting capability (the fourth is briefly discussed in an
“Above and beyond” section near the end of this chapter). First up is Format-Table,
which has an alias, Ft.

 If you read the help file for Format-Table, you’ll notice that it has a number of
parameters. These are some of the most useful ones, along with examples of how to
use them:

■ -autoSize—Normally, PowerShell tries to make a table fill the width of your
window (the exception is when a predefined view, like the one for processes,
defines column widths). That means a table with relatively few columns will
have a lot of space in between those columns, which isn’t always attractive. By
adding the -autosize parameter, you force the shell to try to size each column
to hold its contents, and no more. This makes the table a bit “tighter” in appear-
ance, although it will take a bit of extra time for the shell to start producing out-
put. That’s because it has to examine every object that will be formatted to find
the longest values for each column. Here’s an example:

Get-WmiObject Win32_BIOS | Format-Table -autoSize

■ -property—This parameter accepts a comma-separated list of properties that
should be included in the table. These properties aren’t case-sensitive, but the
shell will use whatever you type as the column headers, so you can get nicer-
looking output by properly casing the property names (“CPU” instead of “cpu,”
for example). This parameter accepts wildcards, meaning you can specify * to
include all properties in the table, or something like c* to include all properties
starting with c. Note that the shell will still only display the properties it can fit
in the table, so not every property you specify may display. This parameter is
positional, so you don’t have to type the parameter name, provided the prop-
erty list is in the first position. Try these examples (the last one is shown in fig-
ure 8.3):

Get-Process | Format-Table -property *
Get-Process | Format-Table -property ID,Name,Responding -autoSize
Get-Process | Format-Table * -autoSize

■ -groupBy—This parameter generates a new set of column headers each time
the specified property value changes. This only works well when you have first
sorted the objects on that same property. An example is the best way to see how
this works:
Get-Service | Sort-Object Status | Format-Table -groupBy Status

Download from Wow! eBook <www.wowebook.com>

90 CHAPTER 8 Formatting—and why it’s done on the right

■ -wrap—If the shell has to truncate information in a column, it will end that col-
umn with ellipses (...) to visually indicate that information was suppressed.
This parameter enables the shell to wrap information, which will make the table
longer, but will preserve all of the information you wanted to display. Here’s an
example:

Get-Service | Format-Table Name,Status,DisplayName -autoSize -wrap

TRY IT NOW You should run through all of these examples in the shell, and
feel free to mix and match these techniques. Experiment a bit to see what
works, and what sort of output you can create.

8.4 Formatting lists
Sometimes you need to display more information than will fit horizontally in a table,
which can make a list useful. Format-List is the cmdlet you’ll turn to, or you can use
its alias, Fl.

 This cmdlet supports some of the same parameters as Format-Table, including
-property. In fact, Fl is another way of displaying the properties of an object. Unlike
Gm, Fl will also display the values for those properties, so that you can see what kind of
information each property contains:

Get-Service | Fl *

Figure 8.4 shows an example of the output. I often use Fl as an alternative way of dis-
covering the properties of an object.

TRY IT NOW Read the help for Format-List, and try experimenting with its

Figure 8.3 Creating
an auto-sized table of
processes
different parameters.

Download from Wow! eBook <www.wowebook.com>

91Custom columns and list entries

8.5 Formatting wide
The last cmdlet, Format-Wide (or its alias, Fw), displays a wide list. It’s able to display
only the values of a single property, so its -property parameter accepts only one prop-
erty name, not a list, and it can’t accept wildcards.

 By default, Format-Wide will look for an object’s Name property, because Name is a
commonly used property and usually contains useful information. The display will
generally default to two columns, but a -columns parameter can be used to specify
more columns:

Get-Process | Format-Wide name -col 4

Figure 8.5 shows an example of what you should see.

TRY IT NOW Read the help for Format-Wide, and try experimenting with its
different parameters.

8.6 Custom columns and list entries
Flip back to the previous chapter, and review the section entitled, “When things don’t
line up: custom properties.” In that section, I showed you how to use a hashtable con-
struct to add custom properties to an object. Both Format-Table and Format-List
can use those same constructs to create custom table columns or custom list entries.

 You might do this to provide a column header that’s different from the property
name being displayed:

Get-Service |

Figure 8.4
Reviewing
services displayed
in list form
➥ Format-Table @{l='ServiceName';e={$_.Name}},Status,DisplayName

Download from Wow! eBook <www.wowebook.com>

92 CHAPTER 8 Formatting—and why it’s done on the right

Or, you might put a more complex mathematical expression in place:

Get-Process |

➥ Format-Table Name,
➥ @{l='VM(MB)';e={$_.VM / 1MB -as [int]}} -autosize

Figure 8.6 shows the output of the preceding command. I admit, I’m cheating here a
little bit by throwing in a bunch of stuff that we haven’t talked about yet.

Figure 8.5
Displaying
process names
in a wide list

Figure 8.6 Creating

a custom, calculated
table column

Download from Wow! eBook <www.wowebook.com>

93Going out: to a file, a printer, or the host

 We might as well talk about it now!

■ Obviously, I’m starting with Get-Process, a cmdlet you’re more than familiar
with by now. If you run Get-Process | Fl *, you’ll see that the VM property is
in bytes—although that’s not how the default table view displays it.

■ I’m telling Format-Table to start with the process’s Name property.
■ Next, I’m creating a custom column that will be labeled VM(MB). The value, or

expression, for that column takes the object’s normal VM property and divides it
by 1MB. The slash is PowerShell’s division operator, and PowerShell recognizes
the shortcuts KB, MB, GB, TB, and PB as denoting kilobyte, megabyte, gigabyte,
terabyte, and petabyte respectively.

■ The result of that division operation will have a decimal component that I don’t
want to see. The -as operator enables me to change the data type of that result
from a floating-point value to, in this case, an integer value (specified by
[int]). The shell will round up or down, as appropriate, when making that
conversion. The result is a whole number with no fractional component.

I wanted to show you this little division-and-changing trick because it can be really use-
ful in creating nicer-looking output. We won’t spend much more time in this book on
these operations (although I will tell you that * is used for multiplication, and as you
might expect + and - are for addition and subtraction).

8.7 Going out: to a file, a printer, or the host
Once something is formatted, you have to decide where it will go.

 If a command line ends in a Format- cmdlet, the formatting instructions created
by the Format- cmdlet will go to Out-Default, which forwards them to Out-Host,
which displays them on the screen:

Above and beyond

I’d like you to try repeating the previous example, but this time don’t type it all on one
line. Type it exactly as it’s shown here in the book, on three lines total. You’ll notice
after typing the first line, which ends in a pipe character, that PowerShell changes its
prompt. That’s because you ended the shell in a pipe, and the shell knows that there
are more commands coming. It will enter this same “waiting for you to finish” mode
if you hit Return without properly closing all curly braces, quotation marks, and
parentheses.

If you didn’t mean to enter that extended-typing mode, hit Ctrl-C to abort, and start
over. In this case, you could type the second line of text and hit Return, and then type
the third line and hit Return. In this mode, you’ll have to hit Return one last time, on
a blank line, to tell the shell you’re done. When you do so, it will execute the command
as if it had been typed on a single, continuous line.
Get-Service | Format-Wide

Download from Wow! eBook <www.wowebook.com>

94 CHAPTER 8 Formatting—and why it’s done on the right

You could also manually pipe the formatting instructions to Out-Host, which would
accomplish exactly the same thing:

Get-Service | Format-Wide | Out-Host

Alternatively, you can pipe formatting instructions to either Out-File or Out-Printer
to direct formatted output to a file or to hardcopy. As you’ll read later, in “Common
points of confusion,” only one of those three Out- cmdlets should ever follow a
Format- cmdlet on the command line.

 Keep in mind that both Out-Printer and Out-File default to a specific character
width for their output, which means a hardcopy or a text file might look different
from what would display on the screen. The cmdlets have a -width parameter that
enables you to change the output width, if desired, to accommodate wider tables.

8.8 Another out: GridViews
You’ve seen Out-GridView in previous chapters, and I mention it here because it’s
another useful form of output. Note that this isn’t technically formatting; in fact, Out-
GridView entirely bypasses the formatting subsystem. No Format- cmdlets are called,
no formatting instructions are produced, and no text output is displayed in the con-
sole window. Out-GridView can’t receive the output of a Format- cmdlet—it can only
receive the regular objects output by other cmdlets.

 Figure 8.7 shows what the grid view looks like.
Figure 8.7 The results of the Out-GridView cmdlet

Download from Wow! eBook <www.wowebook.com>

95Common points of confusion

8.9 Common points of confusion
As I mentioned at the start of this chapter, the formatting system has most of the got-
chas that trip up PowerShell newcomers. There are two main things that my classroom
students tend to run across, so I’ll try to help you avoid them.

8.9.1 Always format right

It’s incredibly important that you remember one rule from this chapter: format right.
In other words, your Format- cmdlet should be the last thing on the command line,
with Out-File or Out-Printer as the only real exceptions. The reason for this rule is
that the Format- cmdlets produce formatting instructions, and only an Out- cmdlet
can properly consume those instructions. If a Format- cmdlet is last on the command
line, the instructions will go to Out-Default (which is always at the end of the pipe-
line), which will forward them to Out-Host, which is happy to work with formatting
instructions.

 Try running this command to illustrate the need for this rule:

Get-Service | Format-Table | Gm

You’ll notice, as shown in figure 8.8, that Gm isn’t displaying information about your
service objects, because the Format-Table cmdlet doesn’t output service objects. It
consumes the service objects you piped in, and it outputs formatting instruc-
tions—which is what Gm sees and reports on.

Figure 8.8 Formatting cmdlets produce special formatting instructions, which

aren’t meaningful to humans.

Download from Wow! eBook <www.wowebook.com>

96 CHAPTER 8 Formatting—and why it’s done on the right

Now try this:

Get-Service | Select Name,DisplayName,Status | Format-Table |

➥ ConvertTo-HTML | Out-File services.html

Go ahead and open Services.html in Internet Explorer, and you’ll see some pretty
crazy results. You didn’t pipe service objects to ConvertTo-HTML; you piped formatting
instructions, so that’s what got converted to HTML. This illustrates why a Format-
cmdlet, if you use one, either has to be the last thing on the command line, or has to
be second-to-last with the last cmdlet being Out-File or Out-Printer.

 Also know that Out-GridView is unusual (for an Out- cmdlet, at least) in that it
won’t accept formatting instructions and will only accept normal objects. Try these two
commands to see the difference:

PS C:\>Get-Process | Out-GridView
PS C:\>Get-Process | Format-Table | Out-GridView

That’s why I explicitly mentioned Out-File and Out-Printer as the only cmdlets that
should follow a Format- cmdlet (technically, Out-Host can also follow a Format-
cmdlet, but there’s no need because ending the command line with the Format-
cmdlet will get the output to Out-Host anyway).

8.9.2 One type of object at a time, please

The next thing to avoid is putting multiple kinds of objects into the pipeline. The for-
matting system looks at the first object in the pipeline and uses the type of that object
to determine what formatting to produce. If the pipeline contains two or more kinds
of objects, the output won’t always be complete or useful.

 For example, run this:

Get-Process; Get-Service

Figure 8.9 Putting two
types of objects into the
pipeline at once can confuse

PowerShell’s formatting
system.

Download from Wow! eBook <www.wowebook.com>

97Lab

That semicolon allows me to put two commands onto a single command line, without
piping the output of the first cmdlet into the second one. In other words, both cmd-
lets will run independently, but they will put their output into the same pipeline. As
you’ll see if you try this, or look at figure 8.9, the output starts out fine, displaying pro-
cess objects. But the output breaks down when it’s time to display the service objects.
Rather than producing the table you’re used to, PowerShell reverts to a list. The for-
matting system simply isn’t designed to take multiple kinds of objects and make the
results look as attractive as possible.

What if you want to combine information drawn from two (or more) different places
into a single form of output? You absolutely can, and you can do so in a way that the
formatting system can deal with very nicely. But you have a lot more to learn before
that—I’ll get to it in chapter 19.

8.10 Lab
See if you can complete the following tasks:

1 Display a table of processes that includes only the process names, IDs, and
whether or not they’re responding to Windows (the Responding property has
that information). Have the table take up as little horizontal room as possible,
but don’t allow any information to be truncated.

2 Display a table of processes that includes the process names and IDs. Also
include columns for virtual and physical memory usage, expressing those values
in megabytes (MB).

3 Use Get-EventLog to display a list of available event logs. (Hint: You’ll need to

Above and beyond

Technically, the formatting system can handle multiple types of objects—if you tell it
how. Run Dir | Gm and you’ll notice that the pipeline contains both DirectoryInfo
and FileInfo objects (Gm has no problem working with pipelines that contain multiple
kinds of objects and will display member information for all of them). When you run
Dir by itself, the output is perfectly legible. That’s because Microsoft provides a pre-
defined custom formatting view for DirectoryInfo and FileInfo objects, and that
view is handled by the Format-Custom cmdlet.

Format-Custom is mainly used to display different predefined custom views. You could
technically create your own predefined custom views, but the necessary XML syntax
is complicated and isn’t publicly documented at this time. So custom views are pretty
much limited to what Microsoft provides.

Microsoft’s custom views do get a lot of usage, though. PowerShell’s help information
is stored as objects, for example, and the formatted help files you see on the screen
are the result of feeding those objects into a custom view.
read the help to learn the correct parameter to accomplish that.) Format the

Download from Wow! eBook <www.wowebook.com>

98 CHAPTER 8 Formatting—and why it’s done on the right

output as a table that includes, in this order, the log display name and the reten-
tion period. The column headers must be “LogName” and “RetDays.”

4 Display a list of services so that a separate table is displayed for services that are
started and services that are stopped. Services that are started should be dis-
played first. (Hint: You’ll use a -groupBy parameter).

8.11 Ideas for on your own
This is the perfect time to experiment with the formatting system. Try using the three
main Format- cmdlets to create different forms of output. The labs in upcoming
chapters will often ask you to use specific formatting, so you might as well hone your
skills with these cmdlets and start memorizing the more-often-used parameters that
we’ve covered in this chapter.
Download from Wow! eBook <www.wowebook.com>

Filtering and
comparisons
So far, we’ve been working with whatever output the shell gave us: all the processes,
all the services, all of the event log entries, all of the hotfixes. That won’t always be
what you want, though. In many cases, you’ll want to narrow the results down to a
few items that specifically interest you. That’s what you’ll learn to do in this chapter.

9.1 Making the shell give you just what you need
The shell offers two broad models for narrowing down results, and they’re both
referred to as filtering. In the first model, you try to instruct the cmdlet that’s retriev-
ing information for you to only retrieve what you’re specifically after. In the second
model, you take everything that the cmdlet gives you and then use a second cmdlet
to filter out the things you don’t want.

 Ideally, you’ll use the first model, which I call early filtering, as much as possible.
It may be as simple as telling the cmdlet what you’re after. For example, with Get-
Service, you can tell it which service names you want:

Get-Service -name e*,*s*

But if you want Get-Service to only return running services, regardless of their
names, you can’t tell the cmdlet to do that for you, because it doesn’t offer any
parameters to specify that.

 Similarly, if you’re using Microsoft’s ActiveDirectory module, all of its Get- cmd-
lets support a -filter parameter. Although you can tell it -filter * to get all
objects, doing so isn’t recommended because of the load that can impose on a
99

Download from Wow! eBook <www.wowebook.com>

100 CHAPTER 9 Filtering and comparisons

domain controller in large domains. Instead, you can specify criteria that explain
precisely what you want:

Get-ADComputer -filter "Name -like '*DC'"

Once again, this technique is ideal because the cmdlet only has to retrieve matching
objects. I also call this technique the filter left technique.

9.2 Filter left
Filter left simply means putting your filtering criteria as far to the left, or toward the
beginning, of the command line as possible. The earlier you can filter out unwanted
objects, the less work the remaining cmdlets on the command line will have to do, and
the less unnecessary information that will have to be transmitted across the network to
your computer.

 The downside of the filter left technique is that every single cmdlet can implement
its own means of specifying filtering, and every cmdlet will have varying abilities to do
any filtering. With Get-Service, for example, you can pretty much only filter on the
Name property of the services. With Get-ADComputer, however, you can filter on pretty
much any Active Directory attribute that a Computer object might have. Being effec-
tive with the filter left technique requires you to learn a lot about how various cmdlets
operate, which can mean a somewhat steeper learning curve. You’ll benefit from bet-
ter performance, though!

 When you’re not able to get a cmdlet to do all of the filtering you need, you’ll turn
to a core PowerShell cmdlet called Where-Object (which has an alias of Where). This
uses a generic syntax and can be used to filter any kind of object, once you’ve
retrieved it and put it into the pipeline.

 To use Where-Object, you’ll need to learn how to tell the shell what you want to fil-
ter, and that involves using the shell’s comparison operators. Interestingly, some filter
left techniques—such as the -filter parameter of the Get- cmdlets in the Active-
Directory module—use the same comparison operators, so you’ll be killing two birds
with one stone. Some cmdlets, however (I’m thinking about Get-WmiObject, which
we’ll discuss later), use an entirely different filtering and comparison language, which
we’ll have to cover when we discuss those cmdlets.

9.3 Comparison operators
In computers, a comparison always involves taking two objects or values and testing
their relationship to one another. You might be testing to see if they’re equal, or to see
if one is greater than another, or if one of them matches a text pattern of some kind.
You indicate the kind of relationship you want to test by using a comparison operator.
The result of the test is always a Boolean value: True or False. In other words, either
the tested relationship is as you specified, or it isn’t.

 PowerShell uses the following comparison operators. Note that, when comparing
text strings, these aren’t case-sensitive. That means an uppercase letter is seen as equal

to a lowercase letter.

Download from Wow! eBook <www.wowebook.com>

101Comparison operators

■ -eq—Equality, as in 5 -eq 5 (which is True) or "hello" -eq "help" (which is
False)

■ -ne—Not equal to, as in 10 -ne 5 (which is True) or "help" -ne "help"

(which is False, because they are, in fact, equal, and we were testing to see if
they were inequal)

■ -ge and -le—Greater than or equal to, and less than or equal to, as in 10 -ge 5
(True) or Get-Date -le '2012-12-02' (which will depend on when you run
this, and shows how dates can be compared in this fashion)

■ -gt and -lt—Greater than and less than, as in 10 -lt 10 (False) or 100 -gt
10 (True)

For string comparisons, you can use a separate set of operators that are case-sensitive,
if needed: -ceq, -cne, -cgt, -clt, -cge, -cle.

 If you want to compare more than one thing at once, you can use the Boolean
operators -and and -or. Each of those takes a subexpression on either side, and I usu-
ally enclose them in parentheses to make the line clearer to read:

■ (5 -gt 10) -and (10 -gt 100) is False, because one or both subexpressions
were False.

■ (5 -gt 10) -or (10 -lt 100) is True, because at least one subexpression was
True.

In addition, the Boolean -not operator simply reverses True and False. This can be
useful when you’re dealing with a variable or a property that already contains True or
False, and you want to test for the opposite condition. For example, if I wanted to test
whether a process was not responding, I could do this (I’m going to use $_ as a place-
holder for a process object):

$_.Responding -eq $False

Windows PowerShell defines $False and $True to represent the False and True Bool-
ean values. Another way to write that comparison would be as follows:

-not $_.Responding

Because Responding normally contains True or False, the -not will reverse False to
True. So if the process isn’t responding (meaning Responding is False), my compari-
son will return True, indicating that the process is “not responding.” I prefer the sec-
ond technique because it reads, in English, more like what I’m actually testing for: “I
want to see if the process is not responding.” You’ll sometimes see the -not operator
abbreviated as an exclamation mark (!).

 There are a couple of other comparison operators that are especially useful when
you need to compare strings of text:

■ -like accepts * as a wildcard, so you can compare to see if "Hello" -like

"*ll*" (that would be True). -notlike is the reverse, and both are case-

insensitive; use -clike and -cnotlike for case-sensitive comparisons.

Download from Wow! eBook <www.wowebook.com>

102 CHAPTER 9 Filtering and comparisons

■ -match makes a comparison between a string of text and a regular expression
pattern. -notmatch is its logical opposite, and as you might expect, -cmatch and
-cnotmatch provide case-sensitive versions. Regular expressions are beyond the
scope of what we’ll cover in this book.

The neat thing about the shell is that you can test almost all of these right at the com-
mand line (the exception is the one where I used the $_ placeholder—it won’t work
by itself, but you’ll see where it will work in just a moment).

TRY IT NOW Go ahead and try any—or all—of these comparisons. Type them
on a line and hit Return, like 5 -eq 5, and see what you get.

9.4 Filtering objects out of the pipeline
Once you’ve written a comparison, where do you use it? Well, using the comparison
language I just outlined, you can use it with the -filter parameter of some cmdlets,
perhaps most notably the ActiveDirectory module’s Get- cmdlets. You can also use it
with the shell’s generic filtering cmdlet, Where-Object.

 For example, want to get rid of all but the running services?

Get-Service | Where-Object -filter { $_.Status -eq 'Running' }

The -filter parameter is positional, so you’ll often see this typed without it, and with
the alias Where:

Get-Service | Where { $_.Status -eq 'Running' }

Above and beyond

If a cmdlet doesn’t use the preceding PowerShell-style comparison operators, it prob-
ably uses the more traditional, programming language--style comparison operators
that you might remember from high school or college (or even your daily work!):

■ = equality
■ <> inequality
■ <= less than or equal to
■ >= greater than or equal to
■ > greater than
■ < less than

If Boolean operators are supported, they’re usually the words AND and OR; some cmd-
lets may support operators such as LIKE as well. You’ll find support for all of these
operators in the -filter parameter of Get-WmiObject, for example, and I’ll repeat
this list when we discuss that cmdlet in chapter 11.

Every cmdlet’s designers get to pick how (and if) they’ll handle filtering; you can often
get examples of what they decided to do by reviewing the cmdlet’s full help, including
the usage examples near the end of the help file.
Download from Wow! eBook <www.wowebook.com>

103The iterative command-line model

If you get used to reading that aloud, it sounds sensible: “where status equals run-
ning.” Here’s how it works: When you pipe objects to Where-Object, it examines each
one of them using its filter. It places one object at a time into the $_ placeholder and
then runs the comparison to see if it’s True or False. If it’s False, the object is
dropped from the pipeline. If the comparison is True, the object is piped out of
Where-Object to the next cmdlet in the pipeline. In this case, the next cmdlet is Out-
Default, which is always at the end of the pipeline (as we discussed in chapter 8) and
which kicks off the formatting process to display your output.

 That $_ placeholder is a special creature: you’ve seen it used before (in chapters 7
and 8), and you’ll see it in only one or two more contexts. You can only use this place-
holder in the specific places where PowerShell looks for it, and this happens to be one
of those places. As you learned in chapters 7 and 8, the period tells the shell that we’re
not comparing the entire object, but rather just one of its properties, Status.

 Hopefully, you’re starting to see where Gm comes in handy, as it gives you a quick
and easy way to discover what properties an object has, so that you can turn around
and use those properties in a comparison like this one. Always keep in mind that the
column headers in PowerShell’s final output don’t always reflect the actual property
names. For example, run Get-Process and you’ll see a column like PM(MB); run Get-
Process | Gm and you’ll see that the actual property name is PM. That’s an important
distinction: always verify property names using Gm, not a Format- cmdlet.

9.5 The iterative command-line model
I want to go on a brief tangent with you and talk about what I call the PowerShell Iter-
ative Command-Line Model, or PSICLM. There’s no reason for it to have an acronym,
but it’s fun to try and pronounce it. The idea here is that you don’t need to construct
these large, complex command lines all at once and entirely from scratch. Start small.

 Let’s say I want to measure the amount of virtual memory being used by the ten
most virtual memory–hungry processes. But if PowerShell itself is one of those pro-
cesses, I don’t want it included in the calculation. Let’s take a quick inventory of what
I need to do:

■ Get processes
■ Get rid of everything that’s PowerShell
■ Sort them by virtual memory
■ Only keep the top 10 or bottom 10, depending on how I sorted them
■ Add up the virtual memory for whatever is left

I believe you know how to do the first three of those. The fourth is accomplished with
your old friend, Select-Object.

TRY IT NOW Take a moment and read the help for Select-Object. Can you
see any parameters that would enable you to keep just the first or last number
of objects in a collection?
Download from Wow! eBook <www.wowebook.com>

104 CHAPTER 9 Filtering and comparisons

 Hopefully you found the answer.
 Finally, you need to add up the virtual memory. This is where you’ll need to find a

new cmdlet, probably by doing a wildcard search with Get-Command or Help. I might
try the Add keyword, or the Sum keyword, or even the Measure keyword.

TRY IT NOW See if you can find a command that would measure the total of a
numeric property like virtual memory. Use Help or Get-Command with the *
wildcard.

Hopefully you’re trying these little tasks and not just reading ahead for the answer,
because this is the key skill in making yourself a PowerShell expert! Once you think
you have the answer, you might start in on the iterative approach.

 To start with, I’ll get processes. That’s easy enough:

Get-Process

TRY IT NOW Follow along in the shell, and run the same commands I’m run-
ning. After each, examine the output, and see if you can predict what I’ll
change for the next iteration of the command.

Next, I’ll filter out what I don’t want. Remember, “filter left” means I want to get the
filter as close to the beginning of the command line as possible. In this case, I’m going
to use Where-Object to do the filtering, so I want it to be the next cmdlet. That’s not
as good as having filtering occurring on the first cmdlet, but it’s better than filtering
later on down the pipeline.

 In the shell, I’ll hit the up arrow on the keyboard to recall my last command, and
then add the next command:

Get-Process | Where-Object -filter { $_.Name -notlike 'powershell*' }

I’m not sure if it’s “powershell” or “powershell.exe,” so I used a wildcard comparison
to cover all my bases. Any process that isn’t like that name will remain in the pipeline.

 I run that to test it, and then hit the up arrow again to add the next bit:

Get-Process | Where-Object -filter { $_.Name -notlike 'powershell*' } |

➥ Sort VM -descending

Hitting Return lets me check my work, and up arrow will let me add the next piece of
the puzzle:

Get-Process | Where-Object -filter { $_.Name -notlike 'powershell*' } |

➥ Sort VM -descending | Select -first 10

Had I sorted in the default ascending order, I would have wanted to keep the -last
10 before adding my last bit:

Get-Process | Where-Object -filter { $_.Name -notlike 'powershell*' } |

➥ Sort VM -descending | Select -first 10 |
➥ Measure-Object -property VM -sum

Hopefully you were able to figure out at least the name of that last cmdlet, if not the

exact syntax I’ve used here.

Download from Wow! eBook <www.wowebook.com>

105Common points of confusion

 This model—running a command, examining the results, recalling it, and modify-
ing it for another try—is what differentiates PowerShell from more traditional script-
ing languages. As a command-line shell, you get those immediate results, and also the
ability to quickly and easily modify your command if the results weren’t what you
wanted. Hopefully you’re also seeing the power that you get by combining even the
handful of cmdlets that you’ve learned so far.

9.6 Common points of confusion
Anytime I introduce Where-Object in a class, I usually come across two main sticking
points. I tried to hit those pretty hard in the preceding discussion, but if there’s any
room left for doubt, let’s clear it up now.

9.6.1 Filter left, please

You want your filtering criteria to go as close to the beginning of the command line as possi-
ble. If you can accomplish the filtering you need on the first cmdlet, do so; if not, try
to filter in the second cmdlet so that the subsequent cmdlets have as little work to do
as possible.

 Also, try to accomplish filtering as close to the source of the data as possible. For
example, if you’re querying services from a remote computer and will need to use
Where-Object—as I did in one of this chapter’s examples—consider using PowerShell
remoting to have the filtering occur on the remote computer, rather than bringing all
of the object to your computer and filtering it there. You’re going to tackle remoting
in the next chapter, and I’ll mention this idea of filtering at the source again there.

9.6.2 When $_ is allowed

The special $_ placeholder is only valid in the places where PowerShell knows to look
for it. When it’s valid, it contains one object at a time from the ones that were piped
into that cmdlet. Keep in mind that what’s in the pipeline can and will change
throughout the pipeline, as various cmdlets execute and produce output.

 Also be careful of nested pipelines—the ones that occur inside a parenthetical
command. For example, this can be tricky to figure out:

Get-Service -computername (Get-Content c:\names.txt |

➥ Where-Object -filter { $_ -notlike '*dc' }) |
➥ Where-Object -filter { $_.Status -eq 'Running' }

 Let’s walk through that:

■ I started with Get-Service, but that isn’t the first command that will execute.
Because of the parentheses, Get-Content will execute first.

■ Get-Content is piping its output—which consists of simple String objects—to
Where-Object. That Where-Object is inside the parentheses, and within its fil-
ter, $_ represents the String objects piped in from Get-Content. Only those
strings that don’t end in “dc” will be retained and output by Where-Object.

■ The output of Where-Object becomes the result of the parenthetical com-

mand, because Where-Object was the last cmdlet inside the parentheses. So all

Download from Wow! eBook <www.wowebook.com>

106 CHAPTER 9 Filtering and comparisons

of the computer names that don’t end in “dc” will be sent to the -computername
parameter of Get-Service.

■ Now Get-Service executes, and the ServiceController objects it produces will
be piped to Where-Object. That instance of Where-Object will put one service
at a time into its $_ placeholder, and it will keep only those services whose
status property is Running.

Sometimes I feel like my eyes are crossing with all the curly braces, periods, and
parentheses—but that’s how PowerShell works, and if you can train yourself to walk
through the command carefully, you’ll be able to figure out what it’s doing.

9.7 Lab
Remember that Where-Object isn’t the only way to filter, and it isn’t even the one you
should turn to first. I’ve kept this chapter a bit shorter so that you can have more time
to work on hands-on examples, so following the principle of filter left, try to accomplish
the following:

1 Import the ServerManager module in Windows Server 2008 R2. Using the Get-
WindowsFeature cmdlet, display a list of server roles and features that are cur-
rently installed.

2 Import the ActiveDirectory module in Windows Server 2008 R2. Using the Get-
ADUser cmdlet, display a list of users whose PasswordLastSet property is equal
to the special value $null. (Hint: This property isn’t retrieved from the direc-
tory by default. You’ll have to specify a parameter that forces this property to be
retrieved if you want to look at it). Your final list should include only the user
name of the users who meet this criterion. This is a tricky task, because getting
$null into the filter criteria for the cmdlet’s own -filter parameter may not
be possible.

3 Display a list of hotfixes that are security updates.
4 Using Get-Service, is it possible to display a list of services that have a start type

of Automatic, but that aren’t currently started?
5 Display a list of hotfixes that were installed by the Administrator, and which are

updates.
6 Display a list of all processes running as either Conhost or Svchost.

9.8 Ideas for on your own
Practice makes perfect, so try filtering some of the output from the cmdlets you’ve
already learned about, such as Get-Hotfix, Get-EventLog, Get-Process, Get-
Service, and even Get-Command. For example, you might try and filter the output of
Get-Command so that only cmdlets are shown. Or use Test-Connection to ping several
computers, and only show the results from computers that did not respond. I’m not
suggesting that you need to use Where-Object in every case, but you should practice

using it when it’s appropriate.

Download from Wow! eBook <www.wowebook.com>

Remote control: one to one,
and one to many
When I first started using PowerShell (in version 1), I was playing around with the
Get-Service command, and noticed that it had a -computerName parameter.
Hmmm ... does that mean it can get services from other computers, too? After a bit
of experimenting, I discovered that’s exactly what it did. I got very excited and
started looking for -computerName parameters on other cmdlets, and was disap-
pointed to find that there were very few. A few more were added in v2, but the com-
mands that have this parameter are vastly outnumbered by the commands that
don’t.

 What I’ve realized since is that PowerShell’s creators are a bit lazy—and that’s a
good thing! They didn’t want to have to code a -computerName parameter for every
single cmdlet, so they created a shell-wide system called remoting. Basically, it
enables any cmdlet to be run on a remote computer. In fact, you can even run com-
mands that exist on the remote computer but that don’t exist on your own com-
puter—meaning that you don’t always have to install every single administrative
cmdlet on your workstation. This remoting system is powerful, and it offers a num-
ber of interesting administrative capabilities.

10.1 The idea behind remote PowerShell
Remote PowerShell works somewhat similarly to Telnet and other age-old remote
control technologies. When you run a command, it’s actually running on the
remote computer. Only the results of that command come back to your computer.
Rather than using Telnet or SSH, however, PowerShell uses a new communications
107

protocol called Web Services for Management (WS-MAN).

Download from Wow! eBook <www.wowebook.com>

108 CHAPTER 10 Remote control: one to one, and one to many

WS-MAN operates entirely over HTTP or HTTPS, making it easy to route through
firewalls if necessary (because each of those protocols uses a single port to communi-
cate). Microsoft’s implementation of WS-MAN comes in the form of a background ser-
vice, Windows Remote Management (WinRM). WinRM is installed along with
PowerShell v2 and is started by default on server operating systems like Windows
Server 2008 R2. It’s installed on Windows 7 by default, but the service is disabled.

 You’ve already learned that Windows PowerShell cmdlets all produce objects as
their output. When you run a remote command, its output objects need to be put into
a form that can be easily transmitted over a network using the HTTP (or HTTPS) pro-
tocol. XML, it turns out, is an excellent way to do that, so PowerShell automatically seri-
alizes those output objects into XML. The XML is transmitted across the network and is
then deserialized on your computer back into objects that you can work with inside
PowerShell.

 Why should you care how this output is returned? Because those serialized objects
are really just snapshots, of sorts; they don’t update themselves continually. For exam-
ple, if you were to get the objects that represent the processes running on a remote
computer, what you’d get back would only be accurate for the exact point in time at
which those objects were generated. Values like memory usage and CPU utilization
won’t be updated to reflect subsequent conditions. In addition, you can’t tell the dese-
rialized objects to do anything—you can’t instruct one to stop itself, for example.

 Those are basic limitations of remoting, but they don’t stop you from doing some
pretty amazing stuff. In fact, you can tell a remote process to stop itself—you just have
to be a bit clever about it. I’ll show you how in a bit.

 There are two basic requirements to make remoting work:

■ Both your computer and the one you want to send commands to must be run-
ning Windows PowerShell v2. Windows XP is the oldest version of Windows on
which you can install PowerShell v2, so it’s the oldest version that can partici-
pate in remoting.

■ Ideally, both computers need to be members of the same domain, or of
trusted/trusting domains. It’s possible to get remoting to work outside of a
domain, but it’s tricky, and I won’t be covering it in this chapter. To learn more
about that scenario, open PowerShell and run Help about_remote_

troubleshooting.

TRY IT NOW I’m hoping that you’ll be able to follow along with some of the
examples in this chapter. To do so, you’ll ideally have a second test computer
(or virtual machine) that’s in the same Active Directory domain as the test
computer you’ve been using up to this point. That second computer can be
running any version of Windows, provided PowerShell v2 is installed. If you
can’t set up an additional computer or virtual machine, use “localhost” to

create remoting connections to your current computer. You’re still using

Download from Wow! eBook <www.wowebook.com>

109WinRM overview

remoting, but it isn’t as exciting to be “remote controlling” the computer
that you’re sitting in front of.

10.2 WinRM overview
Let’s talk a bit about WinRM, because you’re going to have to configure it in order to
start using remoting. Once again, you only need to configure WinRM—and Power-
Shell remoting—on those computers that will receive incoming commands. In most of
the environments I’ve worked in, the administrators have enabled remoting on every
Windows-based computer (keep in mind that PowerShell and remoting are supported
all the way back to Windows XP). Doing so gives you the ability to remote into client
desktop and laptop computers in the background (meaning the users of those com-
puters won’t know you’re doing so), which can be tremendously useful.

WinRM isn’t unique to PowerShell. In fact, it’s likely that Microsoft will start using it
for more and more administrative communications—even things that use other pro-
tocols today. With that in mind, Microsoft made WinRM able to route traffic to multi-
ple administrative applications—not just PowerShell. WinRM essentially acts as a
dispatcher: when traffic comes in, WinRM decides which application needs to deal
with that traffic. All WinRM traffic is tagged with the name of a recipient application,
and those applications must register with WinRM to listen for incoming traffic on their
behalf. In other words, you’ll not only need to enable WinRM, but you’ll also need to
tell PowerShell to register as an endpoint with WinRM.

 One way to do that is to open a copy of PowerShell—making sure that you’re run-
ning it as an Administrator—and run the Enable-PSRemoting cmdlet. You might
sometimes see references to a different cmdlet, called Set-WSManQuickConfig.
There’s no need to run that one; Enable-PSRemoting will call it for you, and Enable-
PSRemoting does a few extra steps that are necessary to get remoting up and running.
All told, the cmdlet will start the WinRM service, configure it to start automatically, reg-
ister PowerShell as an endpoint, and even set up a Windows Firewall exception to per-
mit incoming WinRM traffic.

TRY IT NOW Go ahead and enable remoting on your second computer (or on
the first one, if that’s the only one you have to work with). Make sure you’re
running PowerShell as an Administrator (it should say “Administrator” in the
window’s title bar). If you’re not, close the shell, right-click the PowerShell icon
in the Start menu, and select Run as Administrator from the context menu.

If you’re not excited about having to run around to every computer to enable remot-
ing, don’t worry: you can also do it with a Group Policy object (GPO), too. The neces-
sary GPO settings are built into Windows Server 2008 R2 domain controllers (and you
can download an ADM template from download.Microsoft.com to add these GPO set-
tings to an older domain’s domain controllers). Just open a Group Policy object and

look under the Computer Configuration, then under Administrative Templates, then

Download from Wow! eBook <www.wowebook.com>

110 CHAPTER 10 Remote control: one to one, and one to many

under Windows Components. Near the bottom of the list, you’ll find both Remote
Shell and Windows Remote Management. For now, I’m going to assume that you’ll
run Enable-PSRemoting on those computers that you want to configure, because at
this point you’re probably just playing around with a virtual machine or two.

NOTE The about_remote_troubleshooting help topic in PowerShell provides
more coverage on using GPOs. Look for the “How to enable remoting in an
enterprise” and “How to enable listeners by using a Group Policy” sections
within that help topic.

WinRM v2 (which is what PowerShell uses) defaults to using TCP port 5985 for HTTP
and 5986 for HTTPS. Those ports help to ensure it won’t conflict with any locally
installed web servers, which tend to listen to 80 and 443 instead. You can configure
WinRM to use alternative ports, but I don’t recommend doing so. If you leave those
ports alone, all of PowerShell’s remoting commands will run normally. If you change
the ports, you’ll have to always specify an alternative port when you run a remoting
command, which just means more typing for you.

 If you absolutely must change the port, you can do so by running this command:

Winrm set winrm/config/listener?Address=*+Transport=HTTP

➥ @{Port="1234"}

In this example, “1234” is the port you want. Modify the command to use HTTPS
instead of HTTP to set the new HTTPS port.

DON’T TRY IT NOW Although you may want to change the port in your produc-
tion environment, don’t change it on your test computer. Leave WinRM using
the default configuration so that the remainder of this book’s examples will
work for you without modification.

I should admit that there is a way to configure WinRM on client computers to use
alternative default ports, so that you’re not constantly having to specify an alterna-
tive port when you run commands. But for now let’s stick with the defaults Micro-
soft came up with.

NOTE If you do happen to browse around in the Group Policy object settings
for Remote Shell, you’ll notice that you can set things like how long a remot-
ing session can sit idle before the server kills it, how many concurrent users
can remote into a server at once, how much memory and how many processes
each remote shell can utilize, and the maximum number of remote shells a
given user can open at once. These are all great ways to help ensure that your
servers don’t get overly burdened by forgetful administrators! By default,
however, you do have to be an Administrator to use remoting, so you don’t
need to worry about ordinary users clogging up your servers.
Download from Wow! eBook <www.wowebook.com>

111Using Enter-PSSession and Exit-PSSession for 1:1 remoting

10.3 Using Enter-PSSession and Exit-PSSession for 1:1 remoting
PowerShell uses remoting in two distinct ways. The first is called one-to-one, or 1:1,
remoting (the second way is one-to-many remoting, and you’ll see it in the next sec-
tion). With this kind of remoting, you’re basically accessing a shell prompt on a single
remote computer. Any commands you run will run directly on that computer, and
you’ll see results in the shell window. This is vaguely similar to using Remote Desktop
Connection, except that you’re limited to the command-line environment of Win-
dows PowerShell. Oh, and this kind of remoting uses a fraction of the resources that
Remote Desktop requires, so it imposes much less overhead on your servers!

 To establish a one-to-one connection with a remote computer, run this command:

Enter-PSSession -computerName Server-R2

Of course, you’ll need to provide the correct computer name instead of Server-R2.
 Assuming you enabled remoting on that computer, that you’re all in the same

domain, and that your network is functioning correctly, you should get a connection
going. PowerShell lets you know that you’ve succeeded by changing the shell prompt:

[server-r2] PS C:\>

That prompt tells you that everything you’re doing is taking place on Server-R2 (or
whatever server you connected to). You can run whatever commands you like. You can
even import any modules, or add any PSSnapins, that happen to reside on that
remote computer.

TRY IT NOW Go ahead and try to create a remoting connection to your sec-
ond computer or virtual machine. If you haven’t yet done so, you’ll need to
enable remoting on that computer before you try to connect to it. Note that
you’re going to need to know the real computer name of the remote com-
puter; WinRM won’t, by default, permit you to connect by using its IP address
or a DNS alias.

Even your permissions and privileges carry over across the remote connection. Your
copy of PowerShell will pass along whatever security token it’s running under (it does
this with Kerberos, so it doesn’t pass your username or password across the network).
Any command you run on the remote computer will run under your credentials, so
you’ll be able to do anything you’d normally have permission to do. It’s just like log-
ging directly into that computer’s console and using its copy of PowerShell directly.

 Well, almost. There are a couple of differences:

■ Even if you have a PowerShell profile script on the remote computer, it won’t
run when you connect using remoting. We haven’t fully covered profile scripts
yet (they’re in chapter 24), but suffice to say that they’re a batch of commands

that run automatically each time you open the shell. Folks use them to

Download from Wow! eBook <www.wowebook.com>

112 CHAPTER 10 Remote control: one to one, and one to many

automatically load shell extensions and modules and so forth. That doesn’t hap-
pen when you remote into a computer, so be aware of that.

■ You’re still restricted by the remote computer’s execution policy. Let’s say your
local computer’s policy is set to RemoteSigned, so that you can run local,
unsigned scripts. That’s great, but if the remote computer’s policy is set to the
default, Restricted, it won’t be running any scripts for you when you’re remot-
ing into it.

Aside from those two fairly minor caveats, you should be good to go. Oh, wait—what
do you do when you’re done running commands on the remote computer? Many
PowerShell cmdlets come in pairs, with one cmdlet doing something and the other
doing the opposite. In this case, if Enter-PSSession gets you into the remote com-
puter, can you guess what would get you out of the remote computer? If you guessed
Exit-PSSession, give yourself a prize. The command doesn’t need any parameters;
just run it and your shell prompt will change back to normal, and the remote connec-
tion will close automatically.

TRY IT NOW Go ahead and exit the remoting session, if you created one.
We’re done with it for now.

What if you forget to run Exit-PSSession and instead close the PowerShell window?
Don’t worry. PowerShell and WinRM are smart enough to figure out what you did, and
the remote connection will close all by itself.

 I do have one caution to offer. When you’re remoting into a computer, don’t run
Enter-PSSession from that computer unless you fully understand what you’re doing.
Let’s say you work on Computer A, which runs Windows 7. You remote into Server-R2.
Then, at the PowerShell prompt, you run this:

[server-r2] PS C:\>enter-pssession server-dc4

Now, Server-R2 is maintaining an open connection to Server-DC4. That can start to
create a “remoting chain” that’s hard to keep track of, and which imposes unnecessary
overhead on your servers. There are times when you might have to do this—I’m think-
ing mainly of instances where a computer like Server-DC4 sits behind a firewall and
you can’t access it directly, so you use Server-R2 as a middleman to hop over to Server-
DC4. But, as a general rule, try to avoid remote chaining.

 When you’re using this one-to-one remoting, you don’t need to worry about
objects being serialized and deserialized. As far as you’re concerned, you’re typing
directly on the remote computer’s console. If you retrieve a process and pipe it to
Stop-Process, it’ll stop as you would expect it to.

10.4 Using Invoke-Command for one-to-many remoting
The next trick—and honestly, this is one of the coolest things in Windows Power-
Shell—is to send a command to multiple remote computers at the same time. That’s right,

full-scale distributed computing. Each computer will independently execute the

Download from Wow! eBook <www.wowebook.com>

113Using Invoke-Command for one-to-many remoting

command and send the results right back to you. It’s all done with the Invoke-
Command cmdlet, and it’s called one-to-many, or 1:n, remoting.

 The command looks something like this:

Invoke-Command -computerName Server-R2,Server-DC4,Server12

➥ -command { Get-EventLog Security -newest 200 |
➥ Where { $_.EventID -eq 1212 }}

TRY IT NOW Go ahead and run this command. Substitute the name of your
remote computer (or computers) where I’ve put my three computer names.

Everything in those outermost curly braces, the {}, will get transmitted to the remote
computers—all three of them. By default, PowerShell will talk to up to 32 computers
at once; if you specified more than that, it will queue them up, so that as one com-
puter completes, the next one in line will begin. If you have an awesome network and
powerful computers, you could raise that number by specifying the -throttleLimit
parameter of Invoke-Command—read the command’s help for more information.

I should tell you that you won’t see the -command parameter in the help for Invoke-
Command—but the command I just showed you will work fine. The -command parame-
ter is an alias, or nickname, for the -scriptblock parameter that you will see listed in
the help. I have an easier time remembering -command, so I tend to use it instead of
-scriptblock, but they both work the same way.

 If you read the help for Invoke-Command carefully (see how I’m continuing to push
those help files?), you’ll also notice a parameter that lets you specify a script file,

Be careful about the punctuation

We need to pause for a moment and dig into the preceding example command, be-
cause this is a case where PowerShell’s punctuation can get confusing, and that con-
fusion can make you do the wrong thing when you start constructing these command
lines on your own.

There are two commands in that example that use curly braces: Invoke-Command and
Where (which is an alias for Where-Object). Where is entirely nested within the outer
set of braces. The outermost set of braces enclose everything that’s being sent to
the remote computers for execution:

Get-EventLog Security -newest 200 | Where { $_.EventID -eq 1212 }

It can be tough to follow that nesting of commands, especially in a book like this where
the physical width of the page makes it necessary to display the command across
several lines of text.

Don’t read any further until you’re sure you can identify the exact command that’s
being sent to the remote computer, and that you understand what each matched set
of curly braces is for.
rather than a command. That parameter lets you send an entire script from your local

Download from Wow! eBook <www.wowebook.com>

114 CHAPTER 10 Remote control: one to one, and one to many

computer to the remote computers—meaning you can automate some pretty com-
plex tasks and have each computer do its own share of the work.

TRY IT NOW Make sure you can identify the -scriptblock parameter in the
help for Invoke-Command, and that you can spot the parameter that would
enable you to specify a file path and name instead of a script block.

I want to circle back to the -computerName parameter for a bit. When I first used
Invoke-Command, I typed a comma-separated list of computer names, just as I did in
the previous example. But I work with a lot of computers, so I didn’t want to have to
type them all in every time. I keep text files for some of my common computer catego-
ries, like web servers and domain controllers. Each text file contains one computer
name per line, and that’s it—no commas, no quotes, no nothing. PowerShell makes it
easy for me to use those files:

Invoke-Command -command { dir }

➥ -computerName (Get-Content webservers.txt)

The parentheses here force PowerShell to execute Get-Content first—pretty much
the same way parentheses work in math. The results of Get-Command are then stuck
into the -computerName parameter, which then works against each of the computers
that are listed in the file.

 I also sometimes want to query computer names from Active Directory. This is a bit
trickier. I can use the Get-ADComputer command (from the ActiveDirectory module in
Windows Server 2008 R2) to retrieve computers, but I can’t stick that command in
parentheses like I did with Get-Content. Why not? Because Get-Content produces
simple strings of text, which -computerName is expecting. Get-ADComputer, on the
other hand, produces entire computer objects, and the -computerName parameter
won’t know what to do with them.

 If I want to use Get-ADComputer, I need to find a way to get just the values from
those computer objects’ Name properties. Here’s how:

Invoke-Command -command { dir } -computerName (

➥ Get-ADComputer -filter * -searchBase "ou=Sales,dc=company,dc=pri" |
➥ Select-Object -expand Name)

TRY IT NOW If you’re running PowerShell on a Windows Server 2008 R2
domain controller, or on a Windows 7 computer that has the Remote Server
Administration Tools installed, you can run Import-Module Active-
Directory and then try the preceding command. If your test domain doesn’t
have a Sales OU that contains a computer account, then change ou=Sales to
ou=Domain Controllers, and be sure to change company and pri to the
appropriate values for your domain (for example, if your domain is mycom-
pany.org, you would substitute mycompany for company and org for pri).

Within the parentheses, I’ve piped the computer objects to Select-Object, and I’ve

used its -expand parameter. I’m telling it to expand the Name property of whatever

Download from Wow! eBook <www.wowebook.com>

115Differences between remote and local commands

came in—in this case, those computer objects. The result of that entire parenthetical
expression will be a bunch of computer names, not computer objects—and computer
names are exactly what the -computerName parameter wants to see.

 Just to be complete, I should mention that the -filter parameter of Get-
ADComputer specifies that all computers should be included in the command’s output.
The -searchBase parameter tells the command to start looking for computers in the
specified location—in this case, the Sales OU of the company.pri domain. The Get-
ADComputer command is only available on Windows Server 2008 R2, and on Windows 7
after installing the Remote Server Administration Tools (RSAT). On those operating
systems, you have to run Import-Module ActiveDirectory to load the Active Direc-
tory cmdlets into the shell so that they can be used.

10.5 Differences between remote and local commands
I want to explain a bit about the differences between running commands using
Invoke-Command, and running those same commands locally, as well as the differences
between remoting and other forms of remote connectivity. For this entire discussion,
I’ll use this command as my example:

Invoke-Command -computerName Server-R2,Server-DC4,Server12

➥ -command { Get-EventLog Security -newest 200 |
➥ Where { $_.EventID -eq 1212 }}

Let’s look at some alternatives, and why they’re different.

10.5.1 Invoke-Command versus -ComputerName

Here’s an alternative way to perform that same basic task:

Get-EventLog Security -newest 200

➥ -computerName Server-R2,Server-DC4,Server12
➥ | Where { $_.EventID -eq 1212 }

Here, I’ve used the -computerName parameter of Get-EventLog, rather than invoking
the entire command remotely. I’ll get more or less the same results, but there are
some important differences in how the command executes:

■ Using this command, the computers will be contacted sequentially rather than
in parallel, which means the command may take longer to execute.

■ The output won’t include a PSComputerName property, which may make it
harder for me to tell which result came from which computer.

■ The connection won’t be made using WinRM, but will instead use whatever
underlying protocol the .NET Framework decides on. I don’t know what that is,
and it might be harder to get the connection through any firewalls that are
between me and the remote computer.

■ I’m querying 200 records from each of the three computers, and only then am
I filtering through them to find the ones with EventID 1212. That means I am

probably bringing over a lot of records that I don’t want.

Download from Wow! eBook <www.wowebook.com>

116 CHAPTER 10 Remote control: one to one, and one to many

■ I’m getting back event log objects that are fully functional.

These differences apply to any cmdlet that has a -computerName parameter. Generally
speaking, it can be more efficient and effective to use Invoke-Command rather than a
cmdlet’s -computerName parameter.

 Here’s what would have happened if I’d used the original Invoke-Command instead:

■ The computers would have been contacted in parallel, meaning the command
could complete somewhat more quickly.

■ The output would have included a PSComputerName property, enabling me to
more easily distinguish the output from each computer.

■ The connection would have been made through WinRM, which uses a single,
predefined port that can be easier to get through any intervening firewalls.

■ Each computer would have queried the 200 records and filtered them locally. The
only data transmitted across the network would have been the result of that fil-
tering, meaning that only the records I cared about would have been transmitted.

■ Before transmitting, each computer would have serialized its output into XML.
My computer would have received that XML and deserialized it back into some-
thing that looks like objects. But they wouldn’t have been real event log objects,
and that might limit what I could do with them once they were on my computer.

That last point is a big distinction between using a -computerName parameter and
using Invoke-Command. Let’s discuss that distinction.

10.5.2 Local versus remote processing

Here’s my original example again:

Invoke-Command -computerName Server-R2,Server-DC4,Server12

➥ -command { Get-EventLog Security -newest 200 |
➥ Where { $_.EventID -eq 1212 }}

Now, compare it to this alternative:

Invoke-Command -computerName Server-R2,Server-DC4,Server12

➥ -command { Get-EventLog Security -newest 200 } |
➥ Where { $_.EventID -eq 1212 }

The differences are subtle. Actually, there’s only one difference: I moved one of those
curly braces.

 In the second version, only Get-EventLog is being invoked remotely. All of the
results generated by Get-EventLog will be serialized and sent to my computer, where
they’ll be deserialized into objects and then piped to Where and filtered. The second
version of the command is less efficient, because a lot of unnecessary data is being
transmitted across the network, and my one computer is having to filter the results
from three computers, rather than those three computers filtering their own results

for me. The second version, in other words, is a bad idea.

Download from Wow! eBook <www.wowebook.com>

117But wait, there’s more

 Let’s look at two versions of another command. Here’s the first:

Invoke-Command -computerName Server-R2

➥ -command { Get-Process -name Notepad } |
➥ Stop-Process

Here’s the second version:

Invoke-Command -computerName Server-R2

➥ -command { Get-Process -name Notepad |
➥ Stop-Process }

Once again, the only difference between these two is the placement of a curly brace.
In this example, however, the first version of the command won’t work.

 Look carefully: I’m sending Get-Process -name Notepad to the remote computer.
The remote computer retrieves the specified process, serializes it into XML, and sends
it to me across the network. My computer receives that XML, deserializes it back into
an object, and pipes it to Stop-Process. The problem is that the deserialized XML
doesn’t contain enough information for my computer to realize that the process came
from a remote machine. Instead, my computer will try to stop the Notepad process run-
ning locally, which isn’t what I wanted at all.

 The moral of the story is to always complete as much of your processing on the
remote computer as possible. The only thing you should expect to do with the results
of Invoke-Command is to display them or store them, as a report or data file or some-
thing. The second version of my command follows that advice: what’s being sent to
the remote computer is Get-Process -name Notepad | Stop-Process, so the entire
command—both getting the process and stopping it—happens on the remote com-
puter. Because Stop-Process doesn’t normally produce any output, there won’t be
any objects to serialize and send to me, so I won’t see anything on my local console.
But the command will do what I want: stop the Notepad process on the remote computer,
not on my local machine.

 Whenever I use Invoke-Command, I always look at the commands after it. If I see
commands for formatting, or for exporting data, I’m fine, because it’s okay to do
those things with the results of Invoke-Command. But if Invoke-Command is followed by
action cmdlets—ones that start, stop, set, change, or do something else—then I sit
back and try to think about what I’m doing. Ideally, I want all of those actions to hap-
pen on the remote computer, not on my local computer.

10.6 But wait, there’s more
These examples have all used ad hoc remoting connections, meaning that I specified
computer names. If you’re going to be reconnecting to the same computer (or com-
puters) several times within a short period of time, you can create reusable, persistent
connections to use instead. We’ll cover that technique in chapter 18.

 I should also acknowledge that not every company is going to allow PowerShell

remoting to be enabled—at least, not right away. Companies with extremely restrictive

Download from Wow! eBook <www.wowebook.com>

118 CHAPTER 10 Remote control: one to one, and one to many

security policies may, for example, have firewalls on all client and server computers,
which would block the remoting connection. If your company is one of those, see if an
exception is in place for Remote Desktop Protocol (RDP). I find that’s a common
exception, because Administrators obviously need some remote connectivity to serv-
ers. If RDP is allowed, try to make a case for PowerShell remoting. Remoting connec-
tions can be audited (they look like network logins, much like accessing a file share
would appear in the audit log), and they’re locked down by default to only permit
Administrators to connect. It’s not that different from RDP in terms of security risks,
and it imposes much less overhead on the remote machines than RDP does.

10.7 Common points of confusion
Whenever we start using remoting in a class that I’m teaching, there are some com-
mon problems that crop up over the course of the day:

■ Remoting only works, by default, with the remote computer’s real computer
name. You can’t use DNS aliases or IP addresses.

■ Remoting is designed to be more or less automatically configuring within a
domain. If every computer involved, and your user account, all belong to the
same domain (or trusting domains), things will work great. If not, you’ll need
to run help about_remote_troubleshooting and dig into the details.

■ When you invoke a command, you’re asking the remote computer to launch
PowerShell, run your command, and then close PowerShell. The next com-
mand you invoke on that same remote computer will be starting from
scratch—anything that was run in the first invocation will no longer be in effect.
If you need to run a whole series of related commands, put them all into the
same invocation.

■ Make absolutely certain that you’re running PowerShell as an Administrator,
especially if your computer has User Account Control (UAC) enabled. If the
account you’re using doesn’t have Administrator permissions on the remote
computer, then use the -credential parameter of Enter-PSSession or
Invoke-Command to specify an alternative account that does have Administrator
permissions.

■ If you’re using a local firewall product other than the Windows Firewall,
Enable-PSRemoting won’t set up the necessary firewall exceptions. You’ll need
to do so manually. If your remoting connection will need to traverse a regular
firewall, such as one implemented on a router or proxy, then it’ll also need a
manually entered exception for the remoting traffic.

■ Don’t forget that any settings in a Group Policy object (GPO) override anything
you configure locally. I’ve seen administrators struggle for hours to get remoting
working, only to finally discover that a GPO was overriding everything they did.
In some cases, that GPO was put into place a long time ago by a well-meaning
colleague, who had long since forgotten it was there. Don’t assume that there’s

no GPO affecting you; check and see for sure.

Download from Wow! eBook <www.wowebook.com>

119Ideas for on your own

10.8 Lab
It’s time to start combining some of what you’ve learned about remoting with what
you’ve learned in previous chapters. See if you can accomplish these tasks:

1 Make a one-to-one connection with a remote computer. Launch Notepad.exe.
What happens?

2 Using Invoke-Command, retrieve a list of services that aren’t started from one or
two remote computers. Format the results as a wide list. (Hint: It’s okay to
retrieve results and have the formatting occur on your computer—don’t
include the Format- cmdlet in the commands that are invoked remotely).

3 Use Invoke-Command to get a list of the top ten processes for virtual memory
(VM) usage. Target one or two remote computers, if you can.

4 Create a text file that contains three computer names, with one name per line.
It’s okay to use the same computer name three times if you only have access to
one remote computer. Then use Invoke-Command to retrieve the 100 newest
Application event log entries from the computer names listed in that file.

10.9 Ideas for on your own
One of the PowerShell modules included in Windows 7 is TroubleshootingPack,
which provides command-line access to the new troubleshooting pack functionality in
the operating system. I always tell my students and clients to consider enabling Power-
Shell remoting on all of their client computers, in part because it gives you remote
command-line access to those troubleshooting packs. When a user calls for help,
rather than walking them through a wizard over the phone, you can just remote in
and run the same wizard, in command-line form rather than GUI form, yourself.

 If you have access to a remote Windows 7 computer, enable remoting on it. Initiate
a one-to-one session and import the TroubleshootingPack module. Then see if you
can get and invoke a troubleshooting pack. Remember, run get-command -module
troubleshootingpack to see a list of cmdlets in that module (there are only two), and
run help on those cmdlets to see how they work. You have to provide a file path to the
troubleshooting pack you want; you’ll find them in \Windows\Diagnostics by default.

 Being able to remotely execute these troubleshooting packs—which can even take
corrective action if a problem is found—is a strong argument for enabling remoting
on client computers, especially those running Windows 7.
Download from Wow! eBook <www.wowebook.com>

Tackling Windows
Management

Instrumentation
I’ve been looking forward to writing this chapter, and dreading it at the same time.
Windows Management Instrumentation (WMI) is probably one of the best things
Microsoft has ever offered to administrators. At the same time, it’s also one of the
worst things they’ve ever inflicted on us. In this chapter, I’ll be introducing you to
WMI, showing you how it works, and explaining some of its less-beautiful aspects, so
that there’s full disclosure on what you’re up against.

11.1 Retrieving management information
The idea behind WMI is a good one: it’s a generic system for retrieving manage-
ment information. In some limited cases it can also be used for implementing con-
figuration changes, although, for the most part, Microsoft hasn’t leveraged that
well or consistently.

WMI is built primarily around a system of providers, and each provider is
designed to expose a particular type of management information. For example, on
Windows Server, when you install the DNS Server role, you also install the bits that
make DNS accessible through WMI, enabling you to query DNS records. Windows
has a number of providers that install by default and provide information about the
core operating system and computer hardware. Each computer can have a com-
pletely different set of WMI providers, because each computer on your network will
have different software installed.

 Like everything in PowerShell, WMI presents its information in the form of
120

objects, and those objects have properties (and sometimes methods). The properties

Download from Wow! eBook <www.wowebook.com>

121A WMI primer

contain the management information you might be interested in; any methods available
can be used to initiate actions or to make configuration changes.

11.2 A WMI primer
A typical Windows computer will contain tens of thousands of pieces of management
information, and WMI seeks to organize that into something that’s approachable and
more or less sensible.

 At the top level, WMI is organized into namespaces. A namespace is really just a sort
of folder that ties to a specific product or technology. For example, the root\CIMv2
namespace contains all the Windows operating system and computer hardware infor-
mation; the root\MicrosoftDNS namespace includes all the information about DNS
Server (assuming you’ve installed that role on the computer). On client computers,
root\SecurityCenter contains information about firewall, antivirus, and antispyware
utilities.

 Within a namespace, WMI is divided into a series of classes. A class represents a man-
agement component that WMI knows how to query. For example, the AntivirusProduct
class in root\SecurityCenter is designed to hold information about antispyware prod-
ucts; the Win32_LogicalDisk class in root\CIMv2 is designed to hold information about
logical disks. But just because a class exists on a computer doesn’t mean that the com-
puter actually has any of those components: the Win32_TapeDrive class is present on
all versions of Windows, whether or not a tape drive is actually installed.

 When you do have one or more manageable components, you’ll have an equal num-
ber of instances for that class. An instance is simply a real-world occurrence of something
represented by a class. If your computer has a single BIOS (and they all do), you’ll have
one instance of Win32_BIOS in root\CIMv2; if your computer has a hundred back-
ground services installed, you’ll have a hundred instances of Win32_Service. Note that
the class names in root\CIMv2 tend to start with either Win32_ (even on 64-bit
machines) or CIM_ (which stands for Common Information Model, the standard upon
which WMI is built). In other namespaces, those class name prefixes aren’t usually used.
Also, it’s possible for class names to be duplicated across namespaces. It’s rare, but WMI
allows for it, because each namespace acts as a kind of container and boundary. When
you’re referring to a class, you’ll also have to refer to its namespace, so that WMI knows
where to look for the class and so that it doesn’t get confused between two classes that
have the same name but live in different namespaces.

 On the surface, using WMI seems fairly simple: you figure out which class contains
the information you want, query that class’s instances from WMI, and then examine
the instances’ properties to see the management information. In some cases, you may
ask an instance to execute a method in order to initiate an action or start a configura-
tion change.
Download from Wow! eBook <www.wowebook.com>

122 CHAPTER 11 Tackling Windows Management Instrumentation

11.3 The bad news about WMI
Unfortunately, for most of its life (the situation has recently changed), Microsoft
didn’t exercise a lot of internal controls over WMI. They established a set of program-
ming standards, but the product groups were more or less left to their own devices for
how they implemented classes and whether or not they chose to document them. The
result is that WMI can be a confusing mishmash.

 Within the root\CIMv2 namespace, for example, very few classes have any methods
that allow you to change configuration settings. Properties are read-only, meaning
that you must have a method to make changes; if a method doesn’t exist, you can’t use
WMI to make changes for that class. When the IIS team adopted WMI (for IIS version 6),
they implemented parallel classes for a lot of elements. A website, for example, could
be represented by one class that had the typical read-only properties, but also by a sec-
ond class that had writable properties that you could change. Very confusing—and
the confusion was made worse by the fact that there wasn’t any good documentation
on how to use those classes, because the IIS team originally intended them to be used
mainly by their own tools, not directly by administrators.

 There’s no rule saying that a product has to use WMI, or that if it does use WMI that
it must expose every possible component through WMI. Microsoft’s DHCP server is
inaccessible to WMI, as is its old WINS server. Although you can query the configura-
tion of a network adapter, you can’t retrieve its link speed, because that information
isn’t supplied. Although most of the Win32_ classes are well documented, few of the
classes in other namespaces are documented at all. WMI isn’t searchable, so the pro-
cess of finding the class that you need can be time-consuming and frustrating
(although I’ll try to help with that in the next section).

 The WMI repository—the place where Windows keeps all the WMI informa-
tion—can also become corrupted, and that seems to occur a lot more on client com-
puters than on servers. You might not even notice the problem unless you’re using
System Center Configuration Manager, which relies heavily on WMI and can’t inven-
tory computers properly when the repository becomes corrupted. If you find yourself
in possession of a corrupted repository, check out the “Repairing and re-registering
the WMI” article on Ramesh Srinivasan’s Troubleshooting Windows blog (http://
windowsxp.mvps.org/repairwmi.htm), which provides a good overview of what steps
to take, and in what order. Rebuilding the repository isn’t ever a good first step, but
it’s sometimes necessary, and that article will walk you through the process. You can
also hit your favorite search engine with a search like “wmi repository corrupted” and
you’ll get a number of useful links and tools to try. Microsoft claims to have corrected
the major corruption issues in Windows 7.

 The good news is that Microsoft is making an effort to provide PowerShell cmdlets
for as many administration tasks as possible. For example, WMI used to be the only
practical way to programmatically restart a remote computer, using a method of the

Win32_OperatingSystem class. Now, PowerShell provides a Restart-Computer cmdlet.

Download from Wow! eBook <www.wowebook.com>

123Exploring WMI

In some cases, cmdlets will use WMI internally, but you won’t have to deal with WMI
directly in those cases. Cmdlets can provide a more consistent interface for you, and
they’re almost always better documented. WMI isn’t going away, but over time you’ll
probably have to deal with it—and its eccentricities—a lot less.

11.4 Exploring WMI
Perhaps the easiest way to get started with WMI is to put PowerShell aside for a second
and explore WMI on its own. I use a free WMI Explorer tool that I downloaded from
Sapien (http://www.primaltools.com/downloads/communitytools/); the tool doesn’t
require installation, which means you can easily copy it to a USB flash drive and carry
it to whatever computer you’re interested in. Because each computer can have differ-
ent WMI stuff, you’ll want to run the tool directly on whatever computer you’re plan-
ning to query, so that you can see that computer’s WMI repository.

 I locate most of what I need in WMI with this tool. It does require a lot of browsing
and patience—I’m not pretending this is a perfect process—but it eventually gets me
there. Figure 11.1 shows an example.

 Let’s say I needed to query a bunch of client computers and see what their icon
spacing is set to. That’s something that has to do with the Windows desktop, and

Figure 11.1 Using the WMI Explorer to locate a WMI class
Download from Wow! eBook <www.wowebook.com>

124 CHAPTER 11 Tackling Windows Management Instrumentation

that’s a core part of the operating system, so I started in the root\CIMV2 class, shown
in the tree view on the left side of the WMI Explorer. Clicking the namespace brings
up a list of its classes in the right side, and I took a guess on “Desktop” as a keyword.
Scrolling to the right, I eventually found Win32_Desktop and clicked on that. Doing
so enables the details pane at the bottom, and I clicked on the Properties tab to see
what was available. About a third of the way down, I found IconSpacing, which is
listed as an integer.

 Here’s the trick that most people forget: once you’ve found a class and the prop-
erty or properties you want, click on the Instances tab. There, as shown in figure 11.2,
I can see that there are several instances for this class. It looks as if there’s one
instance for each user account on the computer, in fact. That makes sense, because
each user will have their own desktop configuration, and each might select a differ-
ent icon spacing setting. So when I query this, I’ll either need to specify the exact
instance I want, or I’ll need to get all of the instances and then decide which one’s
icon spacing matters to me.

 Obviously, search engines are another good way to find the class you want. I tend
to prefix queries with “wmi,” as in “wmi icon spacing,” and that will often pull up an

Figure 11.2 Reviewing the available instances for the Win32_Desktop class
Download from Wow! eBook <www.wowebook.com>

125Using Get-WmiObject

example or two that points me in the right direction. The example might be
VBScript-related, or might even be in a .NET language like C# or Visual Basic, but
that’s okay because I’m only after the WMI class name. For example, I just searched
for “wmi icon spacing” and turned up http://stackoverflow.com/questions/202971/
formula-or-api-for-calculating-desktop-icon-spacing-on-windows-xp as the first result.
On that page I found some C# code:

ManagementObjectSearcher searcher = new ManagementObjectSearcher
("root\\CIMV2","SELECT * FROM Win32_Desktop");

I’ve no idea what any of that means, but Win32_Desktop looks like a WMI class name.
My next search will be for that class name, as such a search will often turn up whatever
documentation may exist. I’ll cover the documentation a bit later in this chapter.

11.5 Using Get-WmiObject
PowerShell only makes you learn a single cmdlet to retrieve anything you want from
WMI: Get-WmiObject. With it, you can specify a namespace, a class name, and even the
name of a remote computer—and alternative credentials, if needed—to retrieve all
instances of that class from the computer specified.

 You can even provide filter criteria if you want fewer than all of the instances of the
class. You can get a list of classes from a namespace. Here’s the syntax for that:

Get-WmiObject -namespace root\cimv2 -list

Note that namespace names use a backslash, not a forward slash. To retrieve a class,
specify the namespace and class name:

Get-WmiObject -namespace root\cimv2 -class win32_desktop

The root\CIMv2 namespace is the system default namespace on Windows XP Service
Pack 2 and later, so if your class is in that namespace, you don’t need to specify it. Also,
the -class parameter is positional, so if you provide the class name in the first posi-
tion, the cmdlet will work exactly the same.

 Here are two examples, including one that uses the Gwmi alias instead of the full
cmdlet name:

PS C:\> Get-WmiObject win32_desktop
PS C:\> gwmi antivirusproduct -namespace root\securitycenter

TRY IT NOW You should start following along at this point, running each of
the commands I show you. For commands that include a remote computer
name, you can substitute localhost if you don’t have another remote com-
puter that you can test against.

For many WMI classes, PowerShell has configuration defaults that specify which prop-
erties are shown. Win32_OperatingSystem is a good example because it only displays

six of its properties, in a list, by default. Keep in mind that you can always pipe the

Download from Wow! eBook <www.wowebook.com>

http://stackoverflow.com/questions/202971/formula-or-api-for-calculating-desktop-icon-spacing-on-windows-xp
http://stackoverflow.com/questions/202971/formula-or-api-for-calculating-desktop-icon-spacing-on-windows-xp

126 CHAPTER 11 Tackling Windows Management Instrumentation

WMI objects to Gm or to Format-List * to see all of the available properties; Gm will
also list available methods. Here’s an example:

PS C:\> gwmi win32_operatingsystem | gm

 TypeName: System.Management.ManagementObject#root\cimv2\Win32_Operating
System

Name MemberType Definition
---- ---------- ----------
Reboot Method System.Managemen...
SetDateTime Method System.Managemen...
Shutdown Method System.Managemen...
Win32Shutdown Method System.Managemen...
Win32ShutdownTracker Method System.Managemen...
BootDevice Property System.String Bo...
BuildNumber Property System.String Bu...
BuildType Property System.String Bu...
Caption Property System.String Ca...
CodeSet Property System.String Co...
CountryCode Property System.String Co...
CreationClassName Property System.String Cr...

I’ve truncated that output to save space, but you’ll see the whole thing if you run the
same command.

 The -filter parameter lets you specify criteria for retrieving specific instances.
This can be a bit tricky to use, so here’s an example of the worst-case usage:

PS C:\> gwmi -class win32_desktop -filter "name='COMPANY\\Administrator'"

__GENUS : 2
__CLASS : Win32_Desktop
__SUPERCLASS : CIM_Setting
__DYNASTY : CIM_Setting
__RELPATH : Win32_Desktop.Name="COMPANY\\Administrator"
__PROPERTY_COUNT : 21
__DERIVATION : {CIM_Setting}
__SERVER : SERVER-R2
__NAMESPACE : root\cimv2
__PATH : \\SERVER-R2\root\cimv2:Win32_Desktop.Name="COMPANY
 \\Administrator"
BorderWidth : 1
Caption :
CoolSwitch :
CursorBlinkRate : 530
Description :
DragFullWindows : False
GridGranularity :
IconSpacing : 43
IconTitleFaceName : Tahoma
IconTitleSize : 8
IconTitleWrap : True
Name : COMPANY\Administrator
Pattern : 0

ScreenSaverActive : False

Download from Wow! eBook <www.wowebook.com>

127Using Get-WmiObject

ScreenSaverExecutable :
ScreenSaverSecure :
ScreenSaverTimeout :
SettingID :
Wallpaper :
WallpaperStretched : True
WallpaperTiled : False

There are some things you should notice about this command and its output:

■ The filter criteria is usually enclosed in double quotation marks.
■ The filter comparison operators aren’t the normal PowerShell -eq or -like

operators. Instead, WMI uses more traditional, programming-like operators,
such as =, >, <, <=, >=, and <>. You can use the keyword LIKE as an operator, and
when you do your comparison value can use % as a character wildcard, as in
"NAME LIKE '%administrator%'".

■ Any string comparison values are enclosed in single quotation marks, which is
why the outermost quotes that contain the entire filter expression must be dou-
ble quotes.

■ Backslashes are escape characters for WMI, so when you need to use a literal
backslash, as in this example, you have to use two backslashes.

■ The output of Gwmi always includes a number of system properties. These are
often suppressed by PowerShell’s default display configuration, but they’ll be
displayed if you’re deliberately listing all properties or if the class doesn’t have a
default. System property names start with a double underscore. Here are two
particularly useful ones:
■ __SERVER contains the name of the computer that the instance was retrieved

from. This can be useful when retrieving WMI information from multiple
computers at once.

■ __PATH is an absolute reference to the instance itself, and it can be used to
requery the instance if necessary.

The cmdlet can retrieve not only from remote computers but from multiple comput-
ers, using any technique that can produce a collection of strings that contain either
computer names or IP addresses, for example,

PS C:\> Gwmi Win32_BIOS -comp server-r2,server3,dc4

Computers are contacted sequentially, and if one computer isn’t available, the cmdlet
will produce an error, skip that computer, and move on to the next. Unavailable com-
puters generally must time out, which means the cmdlet will pause for about 30–45
seconds until it gives up, produces the error, and moves on.

 Once you retrieve a set of WMI instances, you can pipe them to any -Object cmd-
let, to any Format- cmdlet, or to any of the Out-, Export-, or ConvertTo- cmdlets. For
example, here’s how you could produce a custom table from the Win32_BIOS class:
PS C:\> Gwmi Win32_BIOS | Format-Table SerialNumber,Version -auto

Download from Wow! eBook <www.wowebook.com>

128 CHAPTER 11 Tackling Windows Management Instrumentation

In chapter 8, I showed you a technique that can be used to produce custom columns
using the Format-Table cmdlet. That technique can come in handy when you wish to
query a couple of WMI classes from a given computer and have the results aggregated
into a single table. To do so, you create a custom column for the table, and have that
column’s expression execute a whole new WMI query. The syntax for the command
can be confusing, but the results are impressive:

PS C:\> gwmi -class win32_bios -computer server-r2,localhost | format-table
 @{l='ComputerName';e={$_.__SERVER}},@{l='BIOSSerial';e={$_.SerialNumber}},
@{l='OSBuild';e={gwmi -class win32_operatingsystem -comp $_.__SERVER | sele
ct-object -expand BuildNumber}} -autosize

ComputerName BIOSSerial OSBuil
 d
------------ ---------- ------
SERVER-R2 VMware-56 4d 45 fc 13 92 de c3-93 5c 40 6b 47 bb 5b 86 7600

That syntax can be a bit easier to parse if you copy it into the PowerShell ISE and for-
mat it a bit:

gwmi -class win32_bios -computer server-r2,localhost |
 format-table
 @{l='ComputerName';e={$_.__SERVER}},
 @{l='BIOSSerial';e={$_.SerialNumber}},
 @{l='OSBuild';e={
 gwmi -class win32_operatingsystem -comp $_.__SERVER |
 select-object -expand BuildNumber}
 } -autosize

Here’s what’s happening:

■ Get-WmiObject is querying Win32_BIOS from two computers.
■ The results are being piped to Format-Table. Format-Table is being told to

create three custom columns:
■ The first column is named ComputerName, and it’s using the __SERVER sys-

tem property from the Win32_BIOS instance.
■ The second column is named BIOSSerial, and it’s using the SerialNumber

property of the Win32_BIOS instance.
■ The third column is named OSBuild. This column is executing a whole new

Get-WmiObject query, retrieving the Win32_OperatingSystem class from the
__SERVER system property of the Win32_BIOS instance (of the same com-
puter). That result is being piped to Select-Object, which is selecting just
the contents of the BuildNumber property of the Win32_OperatingSystem
instance and using that as the value for the OSBuild column.

That’s complex syntax, but it offers powerful results. It’s also a great example of how
much you can achieve by stringing together a few carefully selected PowerShell cmdlets.

 As I’ve mentioned, some WMI classes include methods. You’ll see how to use those

in chapter 13; doing so can be a bit complicated, and the topic deserves its own chapter.

Download from Wow! eBook <www.wowebook.com>

129WMI documentation

11.6 WMI documentation
I mentioned earlier that a search engine is often the best way to find whatever WMI
documentation exists. The Win32_ classes are quite well documented in Microsoft’s
MSDN Library site, but a search engine remains the easiest way to land on the right
page. I enter the name of the class, and the first hit in Google or Bing is usually a page
on http://msdn.microsoft.com.

 Figure 11.3 shows what a typical documentation page looks like.
 Here are some tips for using these documentation pages:

■ In the table of contents on the left side, click WMI Classes or Win32 Classes to
go up a level to the full list of classes.

■ In the main documentation page, methods (if any exist) are listed first, with
links to each method’s individual documentation page. Chapter 13 of this book
will contain more information on interpreting the method documentation.

■ Properties are listed next. Read these carefully! Sometimes Microsoft adds
properties to a class in newer versions of Windows, meaning the property might
not exist in older versions. Other times, different versions of Windows use prop-
erties differently, such as the Win32_Processor class. That class changed
Figure 11.3 Finding WMI documentation on the MSDN Library website

Download from Wow! eBook <www.wowebook.com>

130 CHAPTER 11 Tackling Windows Management Instrumentation

between Windows XP and Windows Vista to streamline the way in which the
class represents processor sockets and cores.

■ At the end is a list of the operating systems that support the class. Newer ver-
sions of Windows contain more classes, so always check this list to make sure the
class will exist on the version of Windows you need to use. Microsoft isn’t always
vigilant about keeping this list up to date, but it’s a good guideline to start with.

11.7 Common points of confusion
Because I’ve spent the last ten chapters telling you to use the built-in PowerShell help,
you might be inclined to run something like help win32_service right inside Power-
Shell. Sadly, that won’t work. The operating system itself doesn’t contain any WMI
documentation, so PowerShell’s help function wouldn’t have anyplace to go look for
it. You’re stuck with whatever help you can find online—and much of that will be from
other admins and programmers, not from Microsoft. Search for “root\SecurityCen-
ter,” for example, and you won’t find a single Microsoft documentation page in the
results, which is unfortunate.

 The different filter criteria that WMI uses are also common points of confusion.
You should always provide a filter whenever you need anything other than all of the
available instances, but you’ll have to memorize that different filter syntax. The filter
syntax is passed along to WMI and not processed by PowerShell, which is why you have
to use the syntax that WMI prefers instead of the native PowerShell operators.

 Part of what makes WMI confusing for some of my classroom students is that,
although PowerShell provides an easy way to query information from WMI, WMI isn’t
really integrated into PowerShell. WMI is an external technology, and it has its own
rules and its own way of working. Although you can get to it from within PowerShell, it
won’t behave exactly like other cmdlets and techniques that are integrated completely
within PowerShell. Keep that in mind, and watch for little points of confusion that
result from WMI’s individuality.

11.8 Lab
Take some time to complete the following hands-on tasks. Much of the difficulty in
using WMI is in finding the class that will give you the information you need, so much
of the time you’ll spend in this lab will be tracking down the right class. Try to think in
keywords (I’ll provide some hints), and use a WMI explorer to quickly search through
classes (the WMI explorer I use lists classes alphabetically, making it easier for me to
validate my guesses).

1 What class could be used to view the current IP address of a network adapter?
Does the class have any methods that could be used to release a DHCP lease?
(Hint: Network is a good keyword here.)

2 Create a table that shows a computer name, operating system build number,
operating system description (caption), and BIOS serial number. (Hint: You’ve
Download from Wow! eBook <www.wowebook.com>

131Ideas for on your own

seen this technique, but you’ll need to reverse it a bit and query the OS class
first, then query the BIOS second).

3 Query a list of hotfixes using WMI. (Hint: Microsoft formally refers to these as
quick fix engineering). Is the list different from that returned by the Get-Hotfix
cmdlet?

4 Display a list of services, including their current status, their start mode, and the
account they use to log on.

5 Can you find a class that will display a list of installed software products? Do you
consider the resulting list to be complete?

11.9 Ideas for on your own
Think about some of the things you might want to query from WMI, and see if you can
find the classes and properties that expose that information. For example, you might
want to find the service pack version of a computer: a service pack modifies the oper-
ating system, so you might start your search in a class that has something to do with
the operating system (and you’ve seen that class name in this chapter). Always try pip-
ing the object to Gm or Format-List * to see a full set of properties, or use a WMI
explorer tool to review the full set of class properties.
Download from Wow! eBook <www.wowebook.com>

Multitasking with
background jobs
Everyone’s always telling you to “multitask,” right? Why shouldn’t PowerShell help
you out with that by doing more than one thing at a time? It turns out that Power-
Shell can do exactly that, especially for longer-running tasks that might involve
multiple target computers. Make sure you’ve read chapters 10 and 11 before you
dive into this chapter, because we’re going to take those remoting and WMI con-
cepts a bit further.

12.1 Making PowerShell do multiple things at the same time
You should think of PowerShell as a single-threaded application, meaning that it
can only do one thing at once. You type a command, you hit Return, and the shell
waits while that command executes. You can’t start running a second command
until the first finishes.

 With its background jobs functionality, however, PowerShell has the ability to
move a command onto a separate background thread (actually a separate, back-
ground PowerShell process). That enables the command to run in the back-
ground, while you continue using the shell for something else.

 You have to make that decision before running the command; after you press
Return, you can’t decide to move a long-running command into the background.
After commands are in the background, PowerShell provides mechanisms to check
on their status, retrieve any results, and so forth.

12.2 Synchronous versus asynchronous
Let’s get a few bits of terminology out of the way first. PowerShell runs normal com-
132

mands synchronously, meaning you hit Return and then wait for the command to

Download from Wow! eBook <www.wowebook.com>

133Creating a local job

complete. Moving a job into the background allows it to run asynchronously, meaning
that you can continue using the shell for other tasks while the command completes.

 There are a few important differences between running commands in these two ways:

■ When you run a command synchronously, you can respond to input requests.
When running commands in the background, there’s no opportunity to see
input requests—in fact, they’ll stop the command from running.

■ Synchronous commands produce error messages when something goes wrong.
Background commands produce errors, but you won’t see them immediately.
You’ll have to make arrangements to capture them, if necessary. (Chapter 22
discusses that.)

■ If you omit a required parameter on a synchronous command, PowerShell can
prompt you for the missing information. On a background command, it can’t,
so the command will simply fail.

■ The results of a synchronous command start displaying as soon as results
become available. With a background command, you wait until the command
finishes running and then retrieve the cached results.

I typically run commands synchronously to test them out and get them working prop-
erly, and only run them in the background after I know they’re fully debugged and
working as I expect them to. That way, I can ensure that the commands will run without
problems, and that they will have the best chance of completing in the background.

 PowerShell refers to background commands as jobs, and there are several ways to
create jobs, along with several commands to manage them.

12.3 Creating a local job
The first type of job we’ll cover is perhaps the easiest: a local job. This is a command
that runs more or less entirely on your local computer (with exceptions that I’ll cover
in a second) and that runs in the background.

 To launch one of these jobs, you use the Start-Job command. A -scriptblock
parameter lets you specify the command (or commands) to run. PowerShell will make
up a default job name (Job1, Job2, and so on), or you can specify a custom job name

Above and beyond

Technically, the jobs that I’ll discuss in this chapter are just one kind of jobs that you
can encounter. Jobs are an extension point for PowerShell, meaning that it’s possible
for someone (either in Microsoft or as a third party) to create other things called jobs
that look and work a bit differently than what I’ll describe here. I just wanted you to
know that little detail, and to know that what you’ll learn here only applies to the native
jobs that ship with PowerShell v2.
by using the -Name parameter. If you need the job to run under alternative credentials,

Download from Wow! eBook <www.wowebook.com>

134 CHAPTER 12 Multitasking with background jobs

a -credential parameter will accept a DOMAIN\Username credential and prompt you
for the password. Rather than specifying a script block, you can specify the -FilePath
parameter to have the job execute an entire script file full of commands.

 Here’s a simple example:

PS C:\> start-job -scriptblock { dir }

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 Job1 Running True localhost

The result of the command is the job object that was created, and you can see that the
job immediately begins running. The job is also assigned a sequential job ID number,
which is shown in the table.

 I said that these jobs run entirely on your local computer, and that’s basically true.
But the commands in the job are allowed to access remote computers, which would be
the case if you ran a command that supported a -computerName parameter. Here’s an
example:

PS C:\> start-job -scriptblock {

➥ get-eventlog security -computer server-r2
}

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
3 Job3 Running True localhost

TRY IT NOW Hopefully you’ll follow along and run all of these commands. If
you only have a single computer to work with, refer to its computer name and
use localhost as an alternative, so that PowerShell will act like it’s dealing with
two computers.

The processing for this job will happen on your local computer. It will contact the
specified remote computer (SERVER-R2 in this example), so the job is, in a way, a
“remote job.” But because the command itself is running locally, I still refer to this as a
local job.

 Sharp-eyed readers will note that the first job I created was named Job1 and given
the ID 1, but the second job was Job3 with ID 3. It turns out that every job has at least
one child job, and the first child job (a child of Job1) was given the name Job2 and the
ID 2. We’ll get to child jobs a bit later in this chapter.

 Here’s something to keep in mind: although local jobs run entirely locally, they do
require the infrastructure of PowerShell’s remoting system, which we covered in chap-
ter 10. If you haven’t enabled remoting, you won’t be able to start local jobs.

12.4 WMI, as a job
Another way to start a job is to use Get-WmiObject. As I explained in the previous
chapter, that command can contact one or more remote computers, but it does so

sequentially. That means a long list of computer names can cause the command to

Download from Wow! eBook <www.wowebook.com>

135Remoting, as a job

take a long time to process, and it’s a natural choice for moving to a background job.
To do so, you use Get-WmiObject as normal but add the -AsJob parameter. You don’t
get to specify a custom job name here; you’re stuck with the default job name that
PowerShell makes up.

TRY IT NOW If you’re running the same commands on your test system, you’ll
need to create a text file called allservers.txt. I put it in the root of my C: drive
(because that’s where I have PowerShell focused for these examples), and I
put several computer names in the file, listing one name per line. You can list
your computer name and localhost to duplicate the results I’m showing you.

PS C:\> get-wmiobject win32_operatingsystem -computername

➥ (get-content allservers.txt) -asjob

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
5 Job5 Running False server-r2,lo...

This time, the shell will create one top-level parent job (Job5, which is shown in the
output of the command), and it will create one child job for each computer that you
specified. You can see that the Location column in the output table lists as many of the
computer names as will fit, indicating that the job is going to be running against those
computers.

 It’s important to understand that Get-WmiObject is executing only on your com-
puter; the cmdlet is using normal WMI communications to contact the remote com-
puters that you specified. It will still do so one at a time and follow the usual defaults
of skipping computers that aren’t available, and so forth. In fact, it works identically to
using Get-WmiObject synchronously, except that the cmdlet runs in the background.

TRY IT NOW There are a few commands other than Get-WmiObject that can
start a job. Try running Help * -parameter asjob to see if you can find them all.

12.5 Remoting, as a job
The last way to create a new job is to use PowerShell’s remoting capabilities, which you
learned about in chapter 10. As with Get-WmiObject, you start this kind of job by add-
ing an -AsJob parameter, but this time you’ll add it to the Invoke-Command cmdlet.

 There’s an important difference here: whatever command you specify in the
-scriptblock (or -command, which is an alias for the same parameter) will be trans-
mitted in parallel to each computer that you specified. Up to 32 computers will be
contacted at once (unless you modify the -throttleLimit parameter to allow more or
fewer), so if you specify more than 32 computer names, only the first 32 will start. The
rest will start after the first set begins finishing, and the top-level job will show a com-
pleted status after all of the computers are finished.

 Unlike the other two ways of starting a job, this one requires that PowerShell v2 be

installed on each target computer, and that each target computer have PowerShell

Download from Wow! eBook <www.wowebook.com>

136 CHAPTER 12 Multitasking with background jobs

remoting enabled. Because the command physically executes on each remote com-
puter, you’re distributing the computing workload, which can help improve perfor-
mance for complex or long-running commands. The results come back to your
computer and are stored with the job until you’re ready to review them.

 Here’s an example, where you’ll also see the -JobName parameter that lets you
specify a job name other than the boring default:

PS C:\> invoke-command -command { get-process }

➥ -computername (get-content .\allservers.txt)
➥ -asjob -jobname MyRemoteJob

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
8 MyRemoteJob Running True server-r2,lo...

12.6 Getting job results
The first thing you’ll probably want to do is check to see if your jobs have finished.
The Get-Job cmdlet will retrieve every job currently defined by the system, and show
you each one’s status:

PS C:\> get-job

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 Job1 Completed True localhost
3 Job3 Completed True localhost
5 Job5 Completed True server-r2,lo...
8 MyRemoteJob Completed True server-r2,lo...

You can also retrieve a specific job, either by using its ID or its name. I suggest that you
do that and pipe the results to Format-List *, because you’ve gathered some valuable
information:

PS C:\> get-job -id 1 | format-list *

State : Completed
HasMoreData : True
StatusMessage :
Location : localhost
Command : dir
JobStateInfo : Completed
Finished : System.Threading.ManualResetEvent
InstanceId : e1ddde9e-81e7-4b18-93c4-4c1d2a5c372c
Id : 1
Name : Job1
ChildJobs : {Job2}
Output : {}

Error : {}

Download from Wow! eBook <www.wowebook.com>

137Getting job results

Progress : {}
Verbose : {}
Debug : {}
Warning : {}

TRY IT NOW If you’re following along, keep in mind that your job IDs and
names might be a bit different than mine. Focus on the output of Get-Job to
get your job IDs and names, and substitute yours in the examples.

One of the most important pieces of information there is the ChildJobs property,
which we’ll cover in just a moment.

 To retrieve the results from a job, use Receive-Job. Before you run this, you need
to know a few things:

■ You have to specify the job you want to receive results from. You can do this by
job ID, job name, or by getting jobs with Get-Job and piping them to Receive-
Job.

■ If you receive the results of the parent job, those results will include all output
from all child jobs. Alternatively, you can choose to just get the results from one
or more child jobs.

■ Normally, receiving the results from a job clears them out of the job output
cache, so you can’t get them a second time. Specify -keep to keep a copy of the
results in memory. Or, you can output the results to CliXML if you want to retain
a copy to work with.

■ The job results may be deserialized objects, which you learned about in chapter 10.
That means they’re a snapshot from the point in time when they were gener-
ated, and they may not have any methods that you can execute. But you can
pipe the job results directly to cmdlets such as Sort-Object, Format-List,
Export-CSV, ConvertTo-HTML, Out-File, and so on, if desired.

Here’s an example:

PS C:\> receive-job -id 1

 Directory: C:\Users\Administrator\Documents

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/21/2009 11:53 AM Integration Services Script Component
d---- 11/21/2009 11:53 AM Integration Services Script Task
d---- 4/23/2010 7:54 AM SQL Server Management Studio
d---- 4/23/2010 7:55 AM Visual Studio 2005
d---- 11/21/2009 11:50 AM Visual Studio 2008

This is an interesting set of results. Here’s a quick reminder of the command that
launched this job in the first place:

PS C:\> start-job -scriptblock { dir }
Download from Wow! eBook <www.wowebook.com>

138 CHAPTER 12 Multitasking with background jobs

Although my shell was in the C:\ drive when I ran this, the directory in the results is
C:\Users\Administrator\Documents. As you can see, even local jobs take on a slightly
different context when they run, which may result in a change of location. Don’t ever
make assumptions about file paths from within a background job: use absolute paths
to make sure you can refer to whatever files your job command may require. If I
wanted the background job to get a directory of C:\, I should have run this:

PS C:\> start-job -scriptblock { dir c:\ }

When I received the results from Job1, I didn’t specify -keep. If I try to get those same
results again, I’ll get nothing, because the results are no longer cached with the job:

PS C:\> receive-job -id 1
PS C:\>

Here’s how you would force the results to stay cached in memory:

PS C:\> receive-job -id 3 -keep

Index Time EntryType Source InstanceID Message
----- ---- --------- ------ ---------- -------
6542 Oct 04 11:55 SuccessA... Microsoft-Windows... 4634 An...
6541 Oct 04 11:55 SuccessA... Microsoft-Windows... 4624 An...
6540 Oct 04 11:55 SuccessA... Microsoft-Windows... 4672 Sp...
6539 Oct 04 11:54 SuccessA... Microsoft-Windows... 4634 An...

Of course, you’ll eventually want to free up the memory that’s being used to cache the
job results, and I’ll cover that in a bit. But first, let’s see a quick example of piping the
job results directly to another cmdlet:

PS C:\> receive-job -name myremotejob | sort-object PSComputerName |

➥ Format-Table -groupby PSComputerName

 PSComputerName: localhost

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName PSComputerName
------- ------ ----- ----- ----- ------ -- ----------- --------------
 195 10 2780 5692 30 0.70 484 lsm loca...
 237 38 40704 36920 547 3.17 1244 Micro... loca...
 146 17 3260 7192 60 0.20 3492 msdtc loca...
 1318 100 42004 28896 154 15.31 476 lsass loca...

This was the job that I started by using Invoke-Command. As always, the cmdlet has
added the PSComputerName property so that I can keep track of which object came
from which computer. Because I retrieved the results from the top-level job, this
included all of the computers that I specified, so this command will sort them on the
computer name and then create an individual table group for each computer.
Download from Wow! eBook <www.wowebook.com>

139Working with child jobs

Get-Job can keep you informed about which jobs have results remaining:

PS C:\> get-job

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 Job1 Completed False localhost
3 Job3 Completed True localhost
5 Job5 Completed True server-r2,lo...
8 MyRemoteJob Completed False server-r2,lo...

The HasMoreData column will be False when there is no output cached with that job.
In the case of Job1 and MyRemoteJob, it’s because I already received those results and
didn’t specify -keep when I did so.

12.7 Working with child jobs
I mentioned earlier that all jobs consist of one top-level parent job and at least one
child job. Let’s look at a job again:

PS C:\> get-job -id 1 | format-list *

State : Completed
HasMoreData : True
StatusMessage :
Location : localhost
Command : dir
JobStateInfo : Completed
Finished : System.Threading.ManualResetEvent
InstanceId : e1ddde9e-81e7-4b18-93c4-4c1d2a5c372c
Id : 1
Name : Job1
ChildJobs : {Job2}
Output : {}
Error : {}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}

TRY IT NOW Don’t follow along for this part, because if you’ve been following
along up to now, you’ve already received the results of Job1. If you’d like to
try this, start a new job by running Start-Job -script { Get-Service },
and use that new job’s ID instead of the ID number 1 I use in my example.
Download from Wow! eBook <www.wowebook.com>

140 CHAPTER 12 Multitasking with background jobs

Here, you can see that Job1 has a child job, Job2. You can get it directly now that you
know its name:

PS C:\> get-job -name job2 | format-list *

State : Completed
StatusMessage :
HasMoreData : True
Location : localhost
Runspace : System.Management.Automation.RemoteRunspace
Command : dir
JobStateInfo : Completed
Finished : System.Threading.ManualResetEvent
InstanceId : a21a91e7-549b-4be6-979d-2a896683313c
Id : 2
Name : Job2
ChildJobs : {}
Output : {Integration Services Script Component, Integration Servic
 es Script Task, SQL Server Management Studio, Visual Studi
 o 2005...}
Error : {}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}

Sometimes, a job will have too many child jobs to list in that form, so you may want to
list them a bit differently:

PS C:\> get-job -id 1 | select-object -expand childjobs

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
2 Job2 Completed True localhost

That technique will create a table of the child jobs for job ID 1, and the table can obvi-
ously be however long it needs to be to list them all.

 You can receive the results from any individual child job—specify its name or ID
with Receive-Job.

12.8 Commands for managing jobs
There are three more commands used with jobs. For each of these, you may specify a
job either by giving its ID, giving its name, or by getting the job and piping it to one of
these cmdlets:

■ Remove-Job—This deletes a job, and any output still cached with it, from memory.
■ Stop-Job—If a job seems to be stuck, this command will terminate it. You’ll still

be able to receive whatever results were generated to that point.
Download from Wow! eBook <www.wowebook.com>

141Commands for managing jobs

■ Wait-Job—This is useful if a script is going to start a job and you want the script
to continue only when the job is done. This command forces the shell to stop
and wait until the job is completed, and then allows the shell to continue.

For example, to remove the jobs that I’ve already received output from, I’d use this
command:

PS C:\> get-job | where { -not $_.HasMoreData } | remove-job
PS C:\> get-job

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
3 Job3 Completed True localhost
5 Job5 Completed True server-r2,lo...

Jobs can also fail, meaning that something went wrong with their execution. Consider
this example:

PS C:\> invoke-command -command { nothing } -computer notonline -asjob -job
name ThisWillFail

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
11 ThisWillFail Failed False notonline

Here, I started a job with a bogus command, and targeted a nonexistent computer.
The job immediately failed, as shown in its status. I don’t need to use Stop-Job here;
the job isn’t running. I can, however, get a list of its child jobs:

PS C:\> get-job -id 11 | format-list *

State : Failed
HasMoreData : False
StatusMessage :
Location : notonline
Command : nothing
JobStateInfo : Failed
Finished : System.Threading.ManualResetEvent
InstanceId : d5f47bf7-53db-458d-8a08-07969305820e
Id : 11
Name : ThisWillFail
ChildJobs : {Job12}
Output : {}
Error : {}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}
Download from Wow! eBook <www.wowebook.com>

142 CHAPTER 12 Multitasking with background jobs

And I can then get just that child job:

PS C:\> get-job -name job12

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
12 Job12 Failed False notonline

As you can see, there are no results to retrieve because no output was ever created for
this job. But the job’s errors are stored in the results, and you can get them by using
Receive-Job:

PS C:\> receive-job -name job12
Receive-Job : [notonline] Connecting to remote server failed with the foll
owing error message : WinRM cannot process the request. The following erro
r occured while using Kerberos authentication: The network path was not fo
und.

The actual error is much longer; I’ve truncated it here to save some space. You’ll
notice that the error includes the computer name that the error came from, [noton-
line]. What happens if only one of the computers can’t be reached? Let’s try:

PS C:\> invoke-command -command { nothing }

➥ -computer notonline,server-r2 -asjob -jobname ThisWillFail

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
13 ThisWillFail Running True notonline,se...

After waiting for a bit, I’ll run this:

PS C:\> get-job

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
13 ThisWillFail Failed False notonline,se...

The job still failed, but let’s look at the individual child jobs:

PS C:\> get-job -id 13 | select -expand childjobs

WARNING: column "Command" does not fit into the display and was removed.

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
14 Job14 Failed False notonline

15 Job15 Failed False server-r2

Download from Wow! eBook <www.wowebook.com>

143Common points of confusion

Okay, they both failed. I have a feeling I know why Job14 didn’t work, but what’s
wrong with Job15?

PS C:\> receive-job -name job15
Receive-Job : The term 'nothing' is not recognized as the name of a cmdlet
, function, script file, or operable program. Check the spelling of the na
me, or if a path was included, verify that the path is correct and try aga
in.

Ah, that’s right, I told it to run a bogus command. As you can see, each child job can
fail for different reasons, and PowerShell will track each one individually.

12.9 Common points of confusion
Jobs are usually pretty straightforward, but there’s one thing I’ve seen folks do that
does cause confusion. Don’t do this:

PS C:\> invoke-command -command { Start-Job -scriptblock { dir } }

➥ -computername Server-R2

This is starting up a temporary connection to SERVER-R2 and starting a local job.
Unfortunately, that connection immediately terminates, so there’s no way to recon-
nect and retrieve that job. In general, then, don’t mix and match the three ways of
starting jobs.

 This one is also a bad idea:

PS C:\> start-job -scriptblock { invoke-command -command { dir }

➥ -computername SERVER-R2 }

That’s completely redundant; just keep the Invoke-Command part and use the -AsJob
parameter to have it run in the background.

 Less confusing, but equally interesting, are the questions my classroom students
often ask about jobs. Probably the most important of these is, “Can I see jobs started
by someone else?” The answer is, no. Jobs are contained entirely within the Power-
Shell process, and although you could see that another user was running PowerShell,
you wouldn’t be able to see inside that process. It’s just like any other application: you
could see that another user was running Microsoft Office Word, for example, but you
couldn’t see what documents they were editing, because those documents exist
entirely inside of Word’s process.

 Jobs only last as long as your PowerShell session is open. After you close it, any jobs
defined within it are gone. Jobs aren’t defined anywhere outside of PowerShell, so
they depend upon its process continuing to run in order to maintain themselves.
Download from Wow! eBook <www.wowebook.com>

Working with bunches
of objects, one at a time
Pretty much the whole point of PowerShell is to automate administration, and that
often means you’ll want to perform some tasks with multiple targets. You might
want to reboot several computers, reconfigure several services, modify several mail-
boxes, and so on. In this chapter, you’ll learn three distinct techniques for accom-
plishing these and other multiple-target tasks: batch cmdlets, WMI methods, and
object enumeration.

13.1 Automation for mass management
I know that this isn’t a book about VBScript, but I want to use a VBScript example to
briefly illustrate the way that multiple-target administration—what I like to call mass
management—has been approached in the past. Consider this example (there’s no
need to type this in and run it—we’re just going to discuss the approach, not the
results):

For Each varService in colServices
 varService.ChangeStartMode("Automatic")
Next

This kind of approach isn’t common only in VBScript, but is common throughout
the world of programming. Here’s what it does:

1 Assume that the variable colServices contains multiple services. It doesn’t
matter how they got in there, because there are many ways you could retrieve
the services. What matters right now is that you have already retrieved the
services and put them into this variable.
144

Download from Wow! eBook <www.wowebook.com>

145The preferred way: batch cmdlets

2 The For Each construct will go through, or enumerate, the services one at a time.
As it does so, it will place each service into the variable varService. So, within
the construct, varService will only contain a single service. If colServices
contained 50 services, then the construct’s contents would execute 50 times,
and each time, varService would contain a different one of the 50 services.

3 Within the construct, we’re executing a method—in this example, Change-
StartMode()—to perform some task.

If you think about it carefully, you’ll realize that we really aren’t doing something to a
bunch of services at once. Instead, we’re doing something to one service at a time,
exactly as we would if we were manually reconfiguring the services by using the graph-
ical user interface. The only difference is that we’re making the computer go through
the services one at a time.

 Computers are really good at repeating things over and over, so this isn’t a horrible
approach. The problem is that this approach requires us to give the computer a lon-
ger and fairly complicated set of instructions. Learning the language necessary to give
that set of instructions can take a while, which is why a lot of administrators try to
avoid VBScript and other scripting languages.

 PowerShell can duplicate this approach, and I’ll show you how later in this chap-
ter, because sometimes you have to resort to this method. But the approach of having
the computer enumerate objects isn’t the most efficient way to use PowerShell. In fact,
PowerShell offers two other techniques that are easier to learn and easier to type, and
they’re often more powerful.

13.2 The preferred way: batch cmdlets
As you’ve learned in several previous chapters, many PowerShell cmdlets can accept
batches, or collections, of objects to work with.

 In chapter 7, for example, you learned how objects can be piped from one cmdlet
to another, like this (please don’t actually run this—it’ll probably crash your com-
puter):

Get-Service | Stop-Service

This is an example of batch administration using a cmdlet. In this case, Stop-Service
is specifically designed to accept one service object, or many service objects, from the
pipeline, and then stop them. Set-Service, Stop-Process, Move-ADObject, and
Move-Mailbox are all examples of cmdlets that accept one or more input objects and
then perform some task or action with each of them. You don’t need to manually enu-
merate the objects using a construct, as I did in the VBScript example in the previous
section. PowerShell knows how to work with batches of objects, and can handle them
for you with a less-complex syntax.
Download from Wow! eBook <www.wowebook.com>

146 CHAPTER 13 Working with bunches of objects, one at a time

 These so-called batch cmdlets (that’s my name for them, not an official term) are my
preferred way of performing mass management. For example, let’s suppose I need to
change the start mode of three services. Rather than using an approach like the
VBScript one, I could do this:

Get-Service -name BITS,Spooler,W32Time | Set-Service -startuptype Automatic

In a way, Get-Service is also a kind of batch cmdlet, because it’s capable of retrieving
services from multiple computers. Suppose I needed to change those same three ser-
vices across a set of three computers:

Get-Service -name BITS,Spooler,W32Time -computer Server1,Server2,Server3 |

➥ Set-Service -startuptype Automatic

One potential downside of this approach is that cmdlets that perform an action often
don’t produce any output indicating that they’ve done their job. That means there is
no visual output from either of the preceding commands, which can be disconcerting.
But those cmdlets often have a -passThru parameter, which tells them to output what-
ever objects they accepted as input. I could have Set-Service output the same ser-
vices it just modified, and have Get-Service re-retrieve those services to see if the
change took effect.

 Here’s an example of using -passThru with a different cmdlet:

Get-Service -name BITS -computer Server1,Server2,Server3 |

➥ Start-Service -passthru |
➥ Get-Service

This command would retrieve the specified service from the three computers I listed.
The services would be piped to Start-Service, which would not only start them but
also output the original service objects. Those service objects would be piped to Get-
Service, telling it which services to retrieve. It would then re-retrieve the services and
create the usual output, enabling me to see that the services were started successfully.

 Once more: this is the preferred way to work in PowerShell. If a cmdlet exists to do
whatever you want, you should use it. Ideally, cmdlets are always written to work with
batches of objects. That isn’t always the case (cmdlet authors are still learning the best
ways to write cmdlets for us administrators), but it’s the ideal.

13.3 The WMI way: invoking WMI methods
Unfortunately, we don’t always have cmdlets that can take whatever action we need,
and that’s especially true when it comes to the items we can manipulate through Win-
dows Management Instrumentation (WMI, which we tackled in chapter 11).

 For example, consider the Win32_NetworkAdapterConfiguration class in WMI.
This class represents the configuration bound to a network adapter (adapters can have

multiple configurations, but for now let’s assume they only have one configuration

Download from Wow! eBook <www.wowebook.com>

147The WMI way: invoking WMI methods

apiece, which is common on client computers). Let’s say that my goal is to enable DHCP
on all of my computer’s Intel network adapters—I don’t want any of the RAS or other
virtual adapters.

 I might start by trying to query the desired adapter configurations, so that I get
something like this as output:

DHCPEnabled : False
IPAddress : {192.168.10.10, fe80::ec31:bd61:d42b:66f}
DefaultIPGateway :
DNSDomain :
ServiceName : E1G60
Description : Intel(R) PRO/1000 MT Network Connection
Index : 7

DHCPEnabled : True
IPAddress :
DefaultIPGateway :
DNSDomain :
ServiceName : E1G60
Description : Intel(R) PRO/1000 MT Network Connection
Index : 12

To achieve this output, I would need to query the appropriate WMI class and filter it
so that only configurations with “Intel” in their description were included. Here’s
the command that will do it (notice that the % acts as a wildcard within the WMI
filter syntax):

PS C:\> gwmi win32_networkadapterconfiguration

➥ -filter "description like '%intel%'"

TRY IT NOW You’re welcome to follow along with the commands I’m run-
ning in this section of the chapter. You may need to tweak the commands
slightly to make them work. For example, if your computer doesn’t have
any Intel-made network adapters, you’d need to change the filter criteria
appropriately.

Once I have those configuration objects in the pipeline, I want to enable DHCP on
them (you can see that one of my adapters doesn’t have DHCP enabled). So I might
start looking for a cmdlet named something like “Enable-DHCP.” Unfortunately, I
won’t find it, because there’s no such thing. There aren’t any cmdlets that are capable
of dealing directly with WMI objects in batches.

 My next step would be to see if the object itself has a method that’s capable of
enabling DHCP. To find out, I’ll pipe those configuration objects to Get-Member (or its
alias, Gm):

PS C:\> gwmi win32_networkadapterconfiguration

➥ -filter "description like '%intel%'" | gm
Download from Wow! eBook <www.wowebook.com>

148 CHAPTER 13 Working with bunches of objects, one at a time

Right near the top of the resulting list, I should see the method that I’m after:
EnableDHCP():

TypeName: System.Management.ManagementObject#root\cimv2\Win32_NetworkAd
apterConfiguration

Name MemberType Definition
---- ---------- ----------
DisableIPSec Method System.Management.ManagementB...
EnableDHCP Method System.Management.ManagementB...
EnableIPSec Method System.Management.ManagementB...
EnableStatic Method System.Management.ManagementB...

The next step a lot of PowerShell newcomers try is to pipe the configuration objects to
the method:

PS C:\> gwmi win32_networkadapterconfiguration

➥ -filter "description like '%intel%'" | EnableDHCP()

Sadly, that won’t work. You can’t pipe objects to a method; you can only pipe to a cmd-
let. EnableDHCP isn’t actually a PowerShell cmdlet. Rather, it’s an action that’s directly
attached to the configuration object itself. The old, VBScript-style approach would
look a lot like the VBScript example I showed you at the start of this chapter, but with
PowerShell you can do something simpler.

 Although there’s no “batch” cmdlet called Enable-DHCP, there is a generic cmdlet
called Invoke-WmiMethod. This cmdlet is specially designed to accept a batch of WMI
objects, such as my Win32_NetworkAdapterConfiguration objects, and to invoke one
of the methods attached to those objects. So here’s the command I would run:

PS C:\> gwmi win32_networkadapterconfiguration

➥ -filter "description like '%intel%'" |
➥ Invoke-WmiMethod -name EnableDHCP

 There are a few things to keep in mind:

■ The method name isn’t followed by parentheses
■ The method name isn’t case-sensitive
■ Invoke-WmiMethod can only accept one kind of WMI object at a time. In this

case, I’m only sending it Win32_NetworkAdapterConfiguration objects, so it
will work fine. It’s okay to send it more than one object (that’s the whole point,
in fact), but all of the objects have to be of the same type.

The output of Invoke-WmiMethod can be a little confusing. WMI always produces a
result object, and it has a lot of system properties (whose names start with two under-
score characters). In my case, the command produced this:

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS

__RELPATH :
__PROPERTY_COUNT : 1

Download from Wow! eBook <www.wowebook.com>

149The WMI way: invoking WMI methods

__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 84

The only useful information here is the one property that doesn’t start with two
underscores: ReturnValue. That number tells me the result of the operation. A
Google search for “Win32_NetworkAdapterConfiguration” turns up the documenta-
tion page, and I can then click through to the EnableDHCP method to see the possible
return values and what they mean. Figure 13.1 shows what I discovered.

 Zero appears to mean success, while 84 says that IP isn’t enabled on that adapter
configuration, so DHCP can’t be enabled. But which bit of the output went with which
of my two network adapter configurations? It’s difficult to tell, because the output
Figure 13.1 Looking up return values for a WMI method’s results

Download from Wow! eBook <www.wowebook.com>

150 CHAPTER 13 Working with bunches of objects, one at a time

doesn’t tell you which specific configuration object produced it. That’s unfortunate,
but it’s the way WMI works.

Invoke-WmiMethod will work for most situations where you have a WMI object that
has a method that you want to execute. It works great when querying WMI objects
from remote computers too. My basic rule is, “If you can get to something by using
Get-WmiObject, then Invoke-WmiObject can execute its methods.”

13.4 The backup plan: enumerating objects
Unfortunately, I have run across a few situations where Invoke-WmiObject couldn’t
execute a method—it kept returning weird error messages. I’ve also run into cases
where I have a cmdlet that can produce objects, but there is no batch cmdlet to which
I can pipe those objects to take some kind of action. In either case, you can still per-
form whatever task you wanted to perform, but you’ll have to fall back on the old
VBScript-style approach of instructing the computer to enumerate the objects and
perform your task against one object at a time. There are two ways to accomplish this
in PowerShell: one is using a cmdlet, and the other is using a scripting construct. We’ll
focus on the first way in this chapter, and I’ll save the second way for chapter 21, which
dives into PowerShell’s built-in scripting language.

 As an example of how to do this, I’m going to use the Win32_Service WMI class.
Specifically, I’m going to use the Change() method. This is a complex method that
can change several elements of a service at once. Figure 13.2 shows its online
Figure 13.2 Documentation page for the Change() method of Win32_Service

Download from Wow! eBook <www.wowebook.com>

151The backup plan: enumerating objects

documentation (which I found by searching for “Win32_Service,” and then clicking
on the Change method).

 Reading this page, I discover that I don’t have to specify every single parameter of
the method. I can specify Null (which in PowerShell is in the special built-in $null
variable) for any parameters that I want to omit. I want to change the service’s startup
password, which is the eighth parameter, so I’ll need to specify $null for the first
seven parameters. That means my method execution might look something like this:

Change($null, $null, $null, $null, $null, $null, $null, "P@ssw0rd")

By the way, the reason I’m not using Get-Service and Set-Service is that those cmd-
lets are incapable of displaying or setting a service’s logon password. WMI can do it,
though, so I’m using WMI.

 Because I can’t use the Set-Service batch cmdlet, which would normally be my
preferred approach, I’ll try my second approach, which is to use Invoke-WmiMethod.
The cmdlet has a parameter, -ArgumentList, where I can specify the arguments for
the method. Here’s what I try, along with the result I get:

PS C:\> gwmi win32_service -filter "name = 'BITS'" | invoke-wmimethod -name
 change -arg $null,$null,$null,$null,$null,$null,$null,"P@ssw0rd"
Invoke-WmiMethod : Input string was not in a correct format.
At line:1 char:62
+ gwmi win32_service -filter "name = 'BITS'" | invoke-wmimethod <<<< -nam
e change -arg $null,$null,$null,$null,$null,$null,$null,"P@ssw0rd"
 + CategoryInfo : NotSpecified: (:) [Invoke-WmiMethod], Forma
 tException
 + FullyQualifiedErrorId : System.FormatException,Microsoft.PowerShell
 .Commands.InvokeWmiMethod

At this point, I have to make a decision. It’s possible that I’m running the command
incorrectly, so I have to decide if I want to spend a lot of time figuring it out. It’s also
possible that Invoke-WmiMethod just doesn’t work with the Change() method very
well, in which case I could be spending a lot of time trying to fix something that I have
no control over.

 My choice in these situations is to try a different approach: I’m going to ask the
computer (well, the shell) to enumerate the service objects, one at a time, and exe-
cute the Change() method on each of them, one at a time. To do so, I’ll use the
ForEach-Object cmdlet:

PS C:\> gwmi win32_service -filter "name = 'BITS'" | foreach-object {$_.cha
nge($null,$null,$null,$null,$null,$null,$null,"P@ssw0rd") }

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}

__SERVER :
__NAMESPACE :

Download from Wow! eBook <www.wowebook.com>

152 CHAPTER 13 Working with bunches of objects, one at a time

__PATH :
ReturnValue : 0

The documentation page says that a ReturnValue of 0 means success, so that means
I achieve my task. But let’s look at that command in more detail, with a bit nicer
formatting:

Get-WmiObject Win32_Service -filter "name = 'BITS'" |

➥ ForEach-Object -process {
➥ $_.change($null,$null,$null,$null,$null,$null,$null,"P@ssw0rd")
➥ }

There’s a lot going on there. The first line should make sense: I’m using Get-
WmiObject to retrieve all instances of Win32_Service that match my filter criteria,
which is looking for services that have the name “BITS” (as usual, I’m picking on the
BITS service because it’s less essential than some others I could have picked, so break-
ing it won’t crash my computer). I’m piping those Win32_Service objects to the
ForEach-Object cmdlet.

 Let’s break that down into its component elements:

■ First, there’s the cmdlet name: ForEach-Object.
■ Next, I’m using the -Process parameter to specify a script block. I didn’t origi-

nally type the -Process parameter name, because it’s a positional parameter.
But that script block—everything contained within the curly braces—is the
value for the -Process parameter. I went ahead and included the parameter
name when I reformatted the command for easier reading.

■ ForEach-Object will execute its script block once for each object that was piped
into ForEach-Object. Each time the script block executes, the next piped-in
object will be placed into the special $_ placeholder.

■ By following $_ with a period, I’m telling the shell that I want to access a prop-
erty or method of the current object.

■ In this example, I’m accessing the Change() method. Note that the method’s
parameters are passed as a comma-separated list, contained within parentheses.
I’ve used $null for the parameters I don’t want to change and provided my new
password as the eighth parameter. The method accepts more parameters, but
because I don’t want to change the ninth, tenth, or eleventh ones, I can omit
them entirely (I could also have specified $null for the last three parameters).

This is definitely a complicated syntax. Figure 13.3 breaks it down for you.
Figure 13.3 Breaking down the ForEach-Object cmdlet

Download from Wow! eBook <www.wowebook.com>

153The backup plan: enumerating objects

This exact same pattern can be used for any WMI method. Why would you ever use
Invoke-WmiMethod instead? Well, it usually does work, and it’s a bit easier to type and
read. But if you’d prefer to only have to memorize one way of doing things, this
ForEach-Object way works fine too. I have to caution you, however, that the examples
you see on the internet might be a lot less easy to read. PowerShell gurus tend to use
aliases, positional parameters, and shortened parameter names a lot, which reduces
readability (but saves on typing). Here’s my same command again in super-short form:

PS C:\> gwmi win32_service -fi "name = 'BITS'" |

➥ % {$_.change($null,$null,$null,$null,$null,$null,$null,"P@ssw0rd") }

Here’s what I changed:

■ I used the alias Gwmi instead of Get-WmiObject.
■ I abbreviated -filter to -fi.
■ I used the % alias instead of ForEach-Object. Yes, the percent sign is an alias to

that cmdlet. I find that to be tough to read, myself, but lots of folks use it.
■ I removed the -process parameter name again, because it’s a positional

parameter.

I don’t like using aliases and abbreviated parameter names when I’m sharing scripts,
posting them in my blog, and so forth, because it makes them too difficult for some-
one else to read. If you’re going to be saving something in a script file, it’s worth your
time to type everything out (or use Tab completion to let the shell type it out for you).

 If you ever wanted to use this example, there are only a few things you might
change. Figure 13.4 summarizes the changes you would make:

■ You would change the WMI class name, and your filter criteria, to retrieve what-
ever WMI objects you wanted.

■ You would modify the method name from Change to whatever method name
you wanted to execute.

■ You would modify the method’s parameter (also called argument) list to what-
ever your method needed. This is always a comma-separated list contained
within parentheses. It’s okay for the parentheses to be completely empty for
methods that have no parameters, such as the EnableDHCP() method I intro-
duced earlier in this chapter.

Figure 13.4 The changes you would make to the example in order to execute a

different WMI method

Download from Wow! eBook <www.wowebook.com>

154 CHAPTER 13 Working with bunches of objects, one at a time

13.5 Common points of confusion
The techniques we’ve covered in this chapter are among the most difficult ones in
PowerShell, and they often cause the most confusion in my classes. Let me try to high-
light some of the problems students tend to run into, and provide some alternative
explanations that will hopefully help you avoid the same issues.

13.5.1 Which way is the right way?

I use the terms batch cmdlet or action cmdlet to refer to any cmdlet that performs some
action against a group, or collection, of objects all at once. In other words, rather than
you having to instruct the computer, “Go through this list of things, and perform this
one action with each of those things,” you just send the whole group to a cmdlet, and
the cmdlet handles it.

 Microsoft is getting better about providing these kinds of cmdlets with their prod-
ucts, but the coverage isn’t 100 percent yet (and probably won’t be for many years,
because there are so many complex Microsoft products). But when a cmdlet does
exist, I prefer to use it. That said, other PowerShell people prefer other ways, depend-
ing on what they learned first and what they remember most easily. All of the follow-
ing are exactly the same:

Get-Service -name *B* | Stop-Service

Get-Service -name *B* | ForEach-Object { $_.Stop() }

Get-WmiObject Win32_Service -filter "name LIKE '%B%' |

➥ Invoke-WmiMethod -name StopService

Get-WmiObject Win32_Service -filter "name LIKE '%B%' |

➥ ForEach-Object { $_.StopService() }

Here’s how each works:

■ The first approach is to use a batch cmdlet B. Here, I’m using Get-Service to
retrieve all services with a “B” in their name, and then stop them.

■ The second approach is similar. Rather than using a batch cmdlet, however, I’m
piping the services to ForEach-Object, and asking it to execute each service’s
Stop() method c.

■ The third way is to use WMI, rather than the shell’s native service-management
cmdlets d. I’m retrieving the desired services (again, any with “B” in their name),
and piping them to Invoke-WmiMethod. I’m telling it to invoke the StopService
method, which is the method name that the WMI service objects use.

■ The fourth way uses ForEach-Object instead of Invoke-WmiMethod, but accom-
plishes exactly the same thing e. This is a combination of c and d, not a
whole new way of doing things.

Heck, there’s even a fifth way, using PowerShell’s scripting language, that does the

Batch cmdletb

ForEach-Objectc

WMId

WMI and
ForEach-Object

e

same thing! There are lots of ways to accomplish almost anything in PowerShell, and

Download from Wow! eBook <www.wowebook.com>

155Common points of confusion

none of them are wrong. Some are just easier to learn, remember, and repeat than
others, which is why I’ve focused on the techniques I have, in the order that I did.

 There’s yet another way, because the Stop-Service cmdlet can be directly told
which processes to stop:

Stop-Process -name BITS

I didn’t include this in the preceding list, because the -name parameter of Stop-
Service doesn’t accept wildcards, so it can’t do exactly what the other examples are
doing.

 Those examples also illustrate some important differences between using native
cmdlets and WMI:

■ Native cmdlets’ filtering criteria usually use * as a wildcard character, where
WMI filtering uses the percent sign (%)—don’t confuse that percent sign for the
ForEach-Object alias! This percent sign is enclosed within the value of Get-
WmiObject’s -filter parameter, and it isn’t an alias.

■ Native objects often have similar capabilities to WMI ones, but the syntax may
differ. Here, the ServiceController objects produced by Get-Service have a
Stop() method; when I access those same services through the WMI
Win32_Service class, the method name becomes StopService().

■ Native filtering often uses native comparison operators, such as -eq; WMI uses
programming-style operators such as = or LIKE.

Which do you use? It doesn’t matter, because there is no one right way. You may even
end up using a mix of these, depending on the circumstances and the capabilities that
the shell is able to offer you for the task at hand.

13.5.2 WMI methods versus cmdlets

When do you use a WMI method or a cmdlet to accomplish a task? It’s a simple choice:

■ If you retrieved something by using Get-WmiObject, you’ll take action on that
something by using a WMI method. You can execute the method by using
Invoke-WmiMethod or the ForEach-Object approach.

■ If you retrieved something by using an approach other than Get-WmiObject,
you’ll use a native cmdlet to take action against that something. Or, if whatever
you retrieved has a method but no supporting cmdlet, you might use the
ForEach-Object approach to execute that method.

Notice that the lowest common denominator here is ForEach-Object: its syntax is
perhaps the most difficult, but it can always be used to accomplish whatever needs to
be done.

 You can never pipe anything to a method. You can only pipe from one cmdlet to
another. If a cmdlet doesn’t exist to do what you need, but a method does, then you

pipe to ForEach-Object, and have it execute the method.

Download from Wow! eBook <www.wowebook.com>

156 CHAPTER 13 Working with bunches of objects, one at a time

 For example, suppose you retrieve something using a Get-Something cmdlet.
You want to delete that something, but there’s no Delete-Something or Remove-
Something cmdlet. The Something objects do, however, have a Delete method. You
can do this:
Get-Something | ForEach-Object { $_.Delete() }

13.5.3 Method documentation

Always remember that methods are revealed by piping objects to Get-Member. Again
let’s use the fictional Get-Something cmdlet as an example:

Get-Something | Get-Member

WMI methods aren’t documented in PowerShell’s built-in help system; you’ll need to
use a search engine (usually searching on the WMI class name) to locate WMI method
instructions and examples. Methods of non-WMI objects are also not available in
PowerShell’s built-in help system. For example, if you get a member list for a service
object you can see that methods named Stop and Start exist:

TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition
---- ---------- ----------
Name AliasProperty Name = ServiceName
RequiredServices AliasProperty RequiredServices = ServicesDepe...
Disposed Event System.EventHandler Disposed(Sy...
Close Method System.Void Close()
Continue Method System.Void Continue()
CreateObjRef Method System.Runtime.Remoting.ObjRef ...
Dispose Method System.Void Dispose()
Equals Method bool Equals(System.Object obj)
ExecuteCommand Method System.Void ExecuteCommand(int ...
GetHashCode Method int GetHashCode()
GetLifetimeService Method System.Object GetLifetimeService()
GetType Method type GetType()
InitializeLifetimeService Method System.Object InitializeLifetim...
Pause Method System.Void Pause()
Refresh Method System.Void Refresh()
Start Method System.Void Start(), System.Voi...
Stop Method System.Void Stop()
ToString Method string ToString()
WaitForStatus Method System.Void WaitForStatus(Syste...

To find the documentation for these, focus on the TypeName, which in this case is
System.ServiceProcess.ServiceController. Search for that complete type name in
a search engine, and you’ll usually come across the official developer documentation
for that type, which will lead to the documentation for whatever specific method
you’re after.
Download from Wow! eBook <www.wowebook.com>

157Lab

13.5.4 ForEach-Object confusion

The ForEach-Object cmdlet has a punctuation-heavy syntax, and adding in a
method’s own syntax can create a pretty ugly command line. Here are some tips for
breaking any mental logjams:

■ Try to use the full cmdlet name instead of its % or ForEach alias. The full name
can be easier to read. If you’re using someone else’s example, replace aliases
with the full cmdlet names.

■ The script block enclosed in curly braces executes once for each object that’s
piped into the cmdlet.

■ Within the script block, the $_ represents one of the objects that was piped in.
■ Use $_ by itself to work with the entire object that was piped in; follow $_ with a

period to work with individual methods or properties.
■ Method names are always followed by parentheses, even if the method doesn’t

require any parameters. When parameters are required, they’re delimited by
commas and included within the parentheses.

13.6 Lab
See if you can answer the following questions and complete the specified tasks. This is
an especially important lab, because it draws on skills that you’ve learned in many pre-
vious chapters, and that you should be continuing to use and reinforce as you prog-
ress through the remainder of this book.

1 What method of a ServiceController object (produced by Get-Service) will
pause the service without stopping it completely?

2 What method of a Process object (produced by Get-Process) would terminate
a given process?

3 What method of a WMI Win32_Process object would terminate a given process?
4 Write four different commands that could be used to terminate all processes

named “Notepad,” assuming that multiple processes might be running under
that same name.
Download from Wow! eBook <www.wowebook.com>

Security alert!
By now, you’ve probably started to get a feel for how powerful PowerShell can
be—and started wondering if maybe all of that power might be a security problem.
Of course it might be! My goal in this chapter is to help you understand exactly how
PowerShell can impact security in your environment, and to show you how Power-
Shell can be configured to provide precisely the balance of security and power that
you require.

14.1 Keeping the shell secure
When PowerShell was introduced in late 2006, Microsoft didn’t exactly have a spot-
less record on security and scripting. After all, VBScript and Windows Script Host
(WSH) were probably two of the most popular virus and malware vectors of the
time, serving as entry points for such popular viruses as “I Love You,” “Melissa,” and
many others. When the PowerShell team announced that they were creating a new
command-line shell that would offer unprecedented power and functionality, and
would offer scripting capabilities, I’m sure alarms went off, people were evacuated
from buildings, and everyone gnashed their teeth in dismay.

 But it’s okay. PowerShell was created after the famous “Trustworthy Computing
Initiative” that Bill Gates started within Microsoft. That initiative had a real effect
within the company: each product team is required to have a skilled software secu-
rity expert sit in on their design meetings, code reviews, and so forth. That expert is
referred to as—and I’m not making this up—the product’s “Security Buddy.” Pow-
erShell’s Security Buddy was one of the authors of Writing Secure Code, Microsoft’s
own bible for writing software that’s less easily exploited by attackers. You can be
158

assured that PowerShell is as secure as any such product can possibly be—at least,

Download from Wow! eBook <www.wowebook.com>

159Windows PowerShell security goals

it’s that secure by default. Obviously, you can change the defaults, but when you do so,
you should consider the security ramifications, not just the functional ones. That’s
what this chapter is going to help you do.

14.2 Windows PowerShell security goals
We need to be clear on what PowerShell does and doesn’t do when it comes to secu-
rity, and the best way to do that is to outline some of PowerShell’s security goals.

 First and foremost, PowerShell doesn’t apply any additional layers of permissions
on anything it touches. That means PowerShell will only enable you to do what you
already have permission to do. If you can’t create new users in Active Directory by
using the graphical console, you won’t be able to do so in PowerShell either. Power-
Shell is simply another means of exercising whatever permissions you already have.

 PowerShell is also not a way of bypassing any existing permissions. Let’s say you
want to deploy a script to your users, and you want that script to do something that
your users don’t normally have permission to do. Well, that script isn’t going to work
for them. If you want your users to do something, you need to give them permission to
do so; PowerShell can only accomplish what the person running a command or script
is already permitted to accomplish.

PowerShell’s security system isn’t designed to prevent anyone from typing in, and run-
ning, whatever commands they have permission to execute. The idea is that it’s pretty

Above and beyond

It’s beyond the scope of this book, but I do want you to be aware that there are ways
to let your users execute a script that runs under credentials other than their own.
This is typically accomplished through a technique called script packaging, and it’s a
feature of some commercial script development environments, such as SAPIEN Pri-
malScript (www.primaltools.com).

After creating a script, you use the packager to bundle the script into an executable
(.EXE) file. This isn’t compilation in the programming sense of the term: the executable
isn’t standalone and does require that PowerShell be installed in order to run. You
can configure the packager to encrypt alternative credentials into the executable. That
way, when someone runs the executable, it launches the packaged script under what-
ever credentials you specify, rather than the user’s own credentials.

The packaged credentials aren’t 100 percent safe. The package does include the user-
name and password, although most packagers encrypt them pretty well. It’s safe to
say that most office users won’t be able to discover the username and password, but
it’s completely possible for a skilled encryption expert to decrypt the username and
password.
difficult to trick a user into typing a long, complicated command, so PowerShell

Download from Wow! eBook <www.wowebook.com>

160 CHAPTER 14 Security alert!

doesn’t apply any security beyond the user’s existing permissions. We know from past
experience, however, that it’s easy to trick users into running a script, which might
well contain commands that are malicious. So most of PowerShell’s security is
designed with the goal of preventing users from unintentionally running scripts. The
“unintentionally” part is very important: nothing in PowerShell’s security is intended
to prevent a determined user from running a script. The idea is only to prevent users
from being tricked into running scripts from untrusted sources.

 PowerShell’s security is also not a defense against malware. Once you have malware
on your system, that malware can do anything you have permission to do. It might use
PowerShell to execute malicious commands, but it might just as easily use any of a
dozen other techniques to damage your computer. Once you have malware on your
system, you’re “owned,” and PowerShell isn’t a second line of defense. That means
you’ll continue to need anti-malware software to prevent malware from getting onto
your system in the first place. This is a hugely important concept that a lot of people
miss: just because a piece of malware might utilize PowerShell to do harm doesn’t
make that malware PowerShell’s problem. The malware must be stopped by your anti-
malware software. Nothing in PowerShell is designed or intended to protect an
already-compromised system.

14.3 Execution policy and code signing
The first security measure PowerShell includes is an execution policy. This is a machine-
wide setting that governs the scripts that PowerShell will execute. As I stated before,
the intent of this setting is to help prevent users from being tricked into running a
script. The default setting, in fact, is Restricted, which prevents scripts from being
executed at all. That’s right: by default, PowerShell can be used to interactively run
commands, but it can’t be used to run scripts. If you try, you’ll get this error message:

File C:\test.ps1 cannot be loaded because the execution of scripts is disa
bled on this system. Please see "get-help about_signing" for more details.
At line:1 char:7
+ ./test <<<<
 + CategoryInfo : NotSpecified: (:) [], PSSecurityException
 + FullyQualifiedErrorId : RuntimeException

14.3.1 Execution policy settings

You can view the current execution policy by running Get-ExecutionPolicy. The exe-
cution policy can be changed in one of three ways:

■ By running the Set-ExecutionPolicy command. This changes the setting in
the HKEY_LOCAL_MACHINE portion of the Windows registry, and so must usually
be run by an Administrator, because normal users don’t have permission to
write to that portion of the registry.

■ By using a Group Policy object. Windows Server 2008 R2 comes with the Win-

dows PowerShell--related settings built right in; for older domain controllers you

Download from Wow! eBook <www.wowebook.com>

161Execution policy and code signing

can download an ADM template to extend Group Policy. You’ll find it at http://
mng.bz/U6tJ. You can also just visit http://download.microsoft.com and punch
in “PowerShell ADM” as a search term.

The PowerShell settings are located under Computer Configuration\Policies\
Administrative Templates\Windows Components\Windows PowerShell as shown
in Figure 14.1. Figure 14.2 shows the policy setting enabled. When configured via
a Group Policy object, the setting in the Group Policy will override any local set-
ting. In fact, if you try to run Set-ExecutionPolicy, it will work, but a warning
message will tell you that your new setting had no effect due to a Group Policy
override.

■ By manually running PowerShell.exe and using its -ExecutionPolicy

command-line switch. When run in this fashion, the specified execution policy
will override any local setting as well as any Group Policy–defined setting.

The execution policy can be set to one of five settings (note that the Group Policy
object only provides access to the middle three):

■ Restricted—This is the default, and scripts aren’t executed. The only excep-
tions are a few Microsoft-supplied scripts that set up PowerShell’s default con-
figuration settings. Those scripts carry a Microsoft digital signature and won’t
execute if modified.

Figure 14.1 Finding the Windows PowerShell settings in a Group Policy object
Download from Wow! eBook <www.wowebook.com>

162 CHAPTER 14 Security alert!

■ AllSigned—PowerShell will execute any script that has been digitally signed by
using a code-signing certificate that was issued by a trusted Certification Author-
ity (CA).

■ RemoteSigned—PowerShell will execute any local script, and will execute
remote scripts if they have been digitally signed by using a code-signing certifi-
cate that was issued by a trusted CA. “Remote scripts” are those that exist on a
remote computer, usually accessed by a Universal Naming Convention (UNC)
path. Scripts marked as having come from the internet are also considered
“remote”; Internet Explorer, Firefox, and Outlook all mark downloads as hav-
ing come from the internet. Some versions of Windows can distinguish between
internet paths and UNC paths; in those cases, UNC paths on the local network
aren’t considered “remote.”

■ Unrestricted—All scripts will run. I don’t like or recommend this setting,
because it provides too little protection.

■ Bypass—This is a special setting that’s intended to be used by application devel-
opers who are embedding PowerShell within their application. This setting
bypasses the configured execution policy and should be used only when the

Figure 14.2 Changing the Windows PowerShell execution policy in a Group
Policy object
hosting application is providing its own layer of script security.

Download from Wow! eBook <www.wowebook.com>

163Execution policy and code signing

Microsoft recommends that RemoteSigned be used when you want to run scripts, and
that it be used only on computers where scripts must be executed. All other comput-
ers should be left at Restricted. RemoteSigned is felt to provide a good balance
between security and convenience; AllSigned is stricter but does require that all of
your scripts be digitally signed. Which means we should probably discuss what digital
signing is all about.

14.3.2 Digital code signing

Digital code signing, code signing for short, is the process of applying a cryptographic
signature to a text file. Signatures appear at the end of the file and look something
like this:

<!-- SIG # Begin signature block -->
<!-- MIIXXAYJKoZIhvcNAQcCoIIXTTCCF0kCAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB -->
<!-- gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR -->
<!-- AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQUJ7qroHx47PI1dIt4lBg6Y5Jo -->
<!-- UVigghIxMIIEYDCCA0ygAwIBAgIKLqsR3FD/XJ3LwDAJBgUrDgMCHQUAMHAxKzAp -->
<!-- YjcCn4FqI4n2XGOPsFq7OddgjFWEGjP1O5igggyiX4uzLLehpcur2iC2vzAZhSAU -->
<!-- DSq8UvRB4F4w45IoaYfBcOLzp6vOgEJydg4wggR6MIIDYqADAgECAgphBieBAAAA -->
<!-- ZngnZui2t++Fuc3uqv0SpAtZIikvz0DZVgQbdrVtZG1KVNvd8d6/n4PHgN9/TAI3 -->
<!-- an/xvmG4PNGSdjy8Dcbb5otiSjgByprAttPPf2EKUQrFPzREgZabAatwMKJbeRS4 -->
<!-- kd6Qy+RwkCn1UWIeaChbs0LJhix0jm38/pLCCOo1nL79E1sxJumCe6GtqjdWOIBn -->
<!-- KKe66D/GX7eGrfCVg2Vzgp4gG7fHADFEh3OcIvoILWc= -->
<!-- SIG # End signature block -->

The signature contains two important pieces of information: First, it lists the identity
of the company or organization that signed the script. Second, it includes an
encrypted copy of the script, which PowerShell can decrypt. Understanding how this
works requires a bit of background information, which will also help you make some
important decisions about security in your environment.

 In order to create a digital signature, you need to have a code-signing certificate.
Also referred to as Class 3 certificates, these are available from commercial CAs like
GoDaddy, VeriSign, Thawte, CyberTrust, and others. You might also obtain one from
your company’s internal Public Key Infrastructure (PKI), if you have one. Class 3 certif-
icates are normally issued only to organizations and companies, not to individuals,
although your company may issue them internally to specific users. Before issuing a
certificate, the CA is responsible for verifying the identity of the recipient—the certifi-
cate is essentially a kind of digital identification card, listing the holder’s name and
other details. So before issuing a certificate to XYZ Corporation, a CA needs to verify
that an authorized representative of XYZ Corporation is making the request. This veri-
fication process is the single most important step in the entire security framework,
and you should only trust a CA that you know does a good job of verifying the identi-
ties of the companies to which it issues certificates. If you’re not familiar with a CA’s
verification procedures, you should not trust that CA.

 Trust is configured in Windows’ Internet Options control panel (and can also be con-

figured by Group Policy). In that control panel, select the Content tab, and then click

Download from Wow! eBook <www.wowebook.com>

164 CHAPTER 14 Security alert!

Publishers. In the resulting dialog box, select the Trusted Root Certification Authorities
tab. As shown in figure 14.3, you’ll see a list of the CAs that your computer trusts.

 When you trust a CA, you also trust all certificates issued by it. If someone uses a
certificate to sign a malicious script, you can use the signature itself to track down the
author—that’s why signed scripts are considered more “trusted” than unsigned
scripts. But if you place your trust in a CA that does a bad job of verifying identities, a
malicious script author might be able to obtain a fraudulent certificate, and you
wouldn’t be able to use their signature to track them down. That’s why choosing
which CAs to trust is such a big responsibility.

 Once you have obtained a Class 3 certificate (specifically, you need one packaged
as an Authenticode certificate—CAs usually offer different varieties for different oper-
ating systems and programming languages), you install it on your computer. Once
installed, you can then use PowerShell’s Set-AuthenticodeSignature cmdlet to apply
a digital signature to a script. Run help about_signing in the shell to learn more
about how to do that. Many commercial script development environments (Pri-
malScript, PowerShell Plus, PowerGUI, and others) can also apply signatures, and can
even do so automatically when you save a script, making the signing process more
transparent for you.

 Signatures not only provide information about the script author’s identity; they
also ensure that the script hasn’t been modified since the author signed it. It works
like this:

1 The script author holds a digital certificate, which consists of two cryptographic

Figure 14.3 Configuring
your computer’s Trusted
Root Certification
keys: a public key and a private key.

Download from Wow! eBook <www.wowebook.com>

165Execution policy and code signing

2 When signing a script, the signature is encrypted using the private key. Only the
script author has access to that key, and only the public key can decrypt the sig-
nature. The signature contains a copy of the script.

3 When PowerShell runs the script, it uses the author’s public key (which is
included along with the signature) to decrypt the signature. If the decryption
fails, the signature was tampered with, and the script won’t run. If the copy of
the script within the signature doesn’t match the clear-text copy, the signature is
considered broken, and the script won’t run.

Figure 14.4 illustrates the entire process that PowerShell goes through when trying to
run a script. You can see how the AllSigned execution policy is thus somewhat more
secure: under that setting, only scripts containing a signature will execute, meaning
that you’ll always be able to identify a script’s author. Of course, you’ll also have to sign
every script you want to run, and re-sign them any time you change them, which can
be inconvenient.

Is certificate
from a trusted

CA?

Is the script
unmodified?

▲ ▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲

▲

▲

Figure 14.4 The process

PowerShell follows when
attempting to execute a script

Download from Wow! eBook <www.wowebook.com>

166 CHAPTER 14 Security alert!

14.4 Other security measures
PowerShell has two other key security measures that are in effect at all times, and that
should not be modified.

 First, the .PS1 filename extension (which is what the shell uses to identify Power-
Shell scripts) isn’t considered an executable file type by Windows. Double-clicking a
.PS1 file will normally open it in Notepad for editing, rather than attempting to exe-
cute it. This configuration is intended to help prevent users from unknowingly execut-
ing a script, even if the execution policy would allow it.

 Second, you can’t run a script within the shell by simply typing its name. The shell
never searches the current directory for scripts, so if you have a script named test.ps1,
simply changing to its folder and typing test or test.ps1 won’t run the script.

 Here’s an example:

PS C:\> test
The term 'test' is not recognized as the name of a cmdlet, function, scrip
t file, or operable program. Check the spelling of the name, or if a path
was included, verify that the path is correct and try again.
At line:1 char:5
+ test <<<<
 + CategoryInfo : ObjectNotFound: (test:String) [], CommandNo
 tFoundException
 + FullyQualifiedErrorId : CommandNotFoundException

Suggestion [3,General]: The command test was not found, but does exist in t
he current location. Windows PowerShell doesn't load commands from the curr
ent location by default. If you trust this command, instead type ".\test".
See "get-help about_Command_Precedence" for more details.
PS C:\>

As you can see, PowerShell does detect the script but warns you that you have to type
either an absolute or relative path in order to run the script. Because the script is
located in C:\, you could run either C:\test, which is an absolute path, or run
.\test, which is a relative path that points to the current folder.

 The purpose of this security feature is to guard against a type of attack called com-
mand hijacking. The attack involves putting a script into a folder, and giving it the same
name as a built-in command, such as Dir. With PowerShell, you never put a path in
front of a command name. So if you run Dir, you know you’re running the command.
If you run .\Dir, you know you’re running a script named Dir.ps1.

14.5 Other security holes?
As I’ve already written, PowerShell’s security is primarily focused on preventing users
from unknowingly running an untrusted script. There’s nothing to stop a user from
manually typing commands into the shell, or even from copying the entire contents of
a script and pasting them into the shell (although the commands might not have the

exact same effect when run in that fashion). It’s a little more difficult to convince a

Download from Wow! eBook <www.wowebook.com>

167Security recommendations

user to do that, and to explain to them how to do it, so Microsoft didn’t focus on that
scenario as a potential attack vector. Just remember that PowerShell doesn’t grant
your users any additional permissions: they will only be able to do those things that
you’ve permitted them to do.

 Sure, someone could call a user on the phone, or send them an email, and walk
them through the process of opening PowerShell, typing a few commands, and dam-
aging their computer. But that same someone could also call a user and walk them
through the attack using means other than PowerShell. It would be just as easy (or dif-
ficult, depending on your viewpoint) to convince a user to open Explorer, select their
Program Files folder, and hit Delete on their keyboard. Actually, that would be easier
than walking them through the equivalent PowerShell command. I point this out only
because people tend to get nervous about the command line and its seemingly infi-
nite reach and power, but the fact is that you and your users can’t do anything with the
shell that couldn’t be done in a half-dozen other ways.

14.6 Security recommendations
As I mentioned earlier, Microsoft recommends the use of the RemoteSigned execution
policy for computers where you need to run scripts. I disagree and suggest that you
consider using AllSigned. Yes, it’s a bit less convenient, but you can make it more con-
venient by following these two recommendations:

■ Commercial CAs charge up to $900 per year for a code-signing certificate. If you
don’t have an internal PKI that can provide a free one, you can make your own.
Run help about_signing for information on obtaining and using Make-
cert.exe, a tool that will make a certificate that will be trusted only by your local
computer. If that’s the only place where you need to run scripts, it’s a quick and
free way to obtain a certificate.

■ Edit scripts in one of the editors I mentioned, each of which can sign the script
for you each time you save the file. That makes the signing process transparent
and automatic, making it more convenient.

As I’ve already stated, I don’t think you should change the .PS1 filename association.
I’ve seen some folks modify Windows to recognize .PS1 as an executable, meaning that
you can double-click a script to run it. That takes us right back to the bad old days of
VBScript, and you probably want to avoid doing that.

 I want to point out that none of the scripts I supply on MoreLunches.com are digi-
tally signed. That means it’s possible for those to be modified without my (or your)
knowledge, so before you run any of those scripts, you need to take the time to review
them, understand what they’re supposed to be doing, and make sure they match
what’s in this book (if appropriate). I didn’t sign the scripts specifically because I want
you to take that time : you should be in the habit of carefully reviewing anything you
download from the internet, no matter how “trusted” the author may seem.
Download from Wow! eBook <www.wowebook.com>

168 CHAPTER 14 Security alert!

14.7 Lab
Your task in this lab is simple—so simple, in fact, that I won’t even post a sample solu-
tion on MoreLunches.com. I just want you to configure your shell to allow script exe-
cution. Use the Set-ExecutionPolicy cmdlet, and I suggest using the RemoteSigned
policy setting. You’re welcome to use AllSigned, but it will be impractical for the pur-
poses of this book’s remaining labs. You could also choose Unrestricted, but I don’t
ever recommend the use of that setting because it’s too liberal.

 That said, if you’re using PowerShell in a production environment, please make
sure that whatever execution policy setting you choose is compatible with your organi-
zation’s security rules and procedures. I don’t want you getting in trouble for the sake
of this book and its labs!
Download from Wow! eBook <www.wowebook.com>

Variables: a place to
store your stuff
I’ve already mentioned that PowerShell contains a scripting language, and in a few
more chapters we’re going to start playing with it. Once you start scripting, how-
ever, you tend to start needing variables, so we’ll get those out of the way in this
chapter. Variables can be used in a lot of places other than long, complex scripts, so
I’ll also show you some practical ways in which you can utilize them.

15.1 Introduction to variables
A simple way to think of a variable is as a box in the computer’s memory that has a
name. You can put whatever you want into the box: a single computer name, a col-
lection of services, an XML document, or whatever you like. You access the box by
using its name, and when accessing it you can either put things in it, add things to
it, or retrieve things from it (when you do so, those things actually stay in the box,
so that you can retrieve them over and over).

 PowerShell doesn’t require a lot of formality around variables. For example, you
don’t have to explicitly announce or declare your intention to use a variable before
doing so. The types of the contents of the variable can be changed: one moment,
you might have a single process in it, and the next moment you can store a bunch
of computer names in it. A variable can even contain multiple different things,
such as a collection of services and a collection of processes (although I admit that
using the variable’s contents, in those cases, can be tricky).
169

Download from Wow! eBook <www.wowebook.com>

170 CHAPTER 15 Variables: a place to store your stuff

15.2 Storing values in variables
Everything in PowerShell—and I do mean everything—is treated as an object. Even a
simple string of characters, such as a computer name, is considered an object. For
example, piping a string to Get-Member (or its alias, Gm) reveals that the object is of the
type System.String and that it has a great many methods that you can work with (I’m
truncating the list here to save space):

PS C:\> "SERVER-R2" | gm

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method int CompareTo(System.Object valu...
Contains Method bool Contains(string value)
CopyTo Method System.Void CopyTo(int sourceInd...
EndsWith Method bool EndsWith(string value), boo...
Equals Method bool Equals(System.Object obj), ...
GetEnumerator Method System.CharEnumerator GetEnumera...
GetHashCode Method int GetHashCode()
GetType Method type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
IndexOf Method int IndexOf(char value), int Ind...
IndexOfAny Method int IndexOfAny(char[] anyOf), in...

TRY IT NOW Try running this same command in PowerShell so that you can
see the complete list of methods—and even a property—that comes with a
System.String.

Although that string is technically an object, just like everything else in the shell,
you’ll find that folks tend to refer to it as a simple value. That’s because, in most cases,
what you’re concerned about is the string itself—"SERVER-R2" in my example—and
you’re less concerned about retrieving information from properties. That’s different
from, say, a process, where the entire process object is this big, abstract data construct,
and what you’re usually dealing with are individual properties such as VM, PM, Name,
CPU, ID, and so forth. I guess you could say that a String is an object, but it’s a much
less complicated object than something like a Process.

 PowerShell allows you to store these simple values in a variable. To do so, specify
the variable, and use the equal sign operator—the assignment operator—followed by
whatever you want to put within the variable. Here’s an example:
PS C:\> $var = "SERVER-R2"

TRY IT NOW You’ll want to follow along with these examples, so that you can
replicate the results I’ll demonstrate. You should use your test server’s name
rather than SERVER-R2.

It’s important to note that the dollar sign ($) isn’t part of the variable’s name. In this

example, the variable name is var. The dollar sign is a cue to the shell that what

Download from Wow! eBook <www.wowebook.com>

171Storing values in variables

follows is going to be a variable name, and that we want to access the contents of that
variable. In this case, we’re setting the contents of the variable.

 Here are some points to keep in mind about variables and their names:

■ Variable names usually contain letters, numbers, and underscores, and it’s most
common for them to begin with a letter or underscore.

■ Variable names can contain spaces, but the name must be enclosed in curly
braces. For example, ${My Variable} is the way to represent a variable named
“My Variable.” Personally, I really dislike variable names that contain spaces,
because they require more typing and they’re harder to read.

■ Variables don’t persist between shell sessions. When you close the shell, any
variables you created will be gone.

■ Variable names can be quite long—long enough that you don’t need to worry
about how long. Try and make variable names sensible. For example, if you’ll be
putting a computer name into a variable, use computername as the variable
name. If a variable will contain a bunch of processes, then processes is a good
variable name.

■ Except for folks who have a VBScript background, PowerShell users don’t typi-
cally utilize variable name prefixes to indicate what is stored in the variable. For
example, in VBScript, strComputerName was a common kind of variable, indicat-
ing that the variable stored a string (the “str” part). PowerShell doesn’t care if
you do that, but it’s no longer considered a desirable practice by the commu-
nity at large.

To retrieve the contents of a variable, use the dollar sign followed by the variable
name. Again, the dollar sign tells the shell that you want to access the contents of a vari-
able; following it with the variable name tells the shell which variable you’re accessing.

PS C:\> $var
SERVER-R2

A variable can be used in place of a value in almost any situation. For example, when
using WMI, you have the option to specify a computer name. The command might
normally look like this:

PS C:\> get-wmiobject win32_computersystem -comp SERVER-R2

Domain : company.pri
Manufacturer : VMware, Inc.
Model : VMware Virtual Platform
Name : SERVER-R2
PrimaryOwnerName : Windows User
TotalPhysicalMemory : 3220758528

You can substitute a variable for the same thing:

PS C:\> get-wmiobject win32_computersystem -comp $var

Domain : company.pri

Manufacturer : VMware, Inc.

Download from Wow! eBook <www.wowebook.com>

172 CHAPTER 15 Variables: a place to store your stuff

Model : VMware Virtual Platform
Name : SERVER-R2
PrimaryOwnerName : Windows User
TotalPhysicalMemory : 3220758528

By the way, I realize that var is a pretty generic variable name. I’d normally use com-
putername, but in this specific instance I plan to reuse $var in several situations, so I
decided to keep it generic. Don’t let this example stop you from using more sensible
variable names in real life.

 I may have put a string into $var to begin with, but I can change that anytime I
want:

PS C:\> $var = 5
PS C:\> $var | gm

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
CompareTo Method int CompareTo(System.Object value), int CompareT...
Equals Method bool Equals(System.Object obj), bool Equals(int ...
GetHashCode Method int GetHashCode()
GetType Method type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
ToString Method string ToString(), string ToString(string format...

Here, I placed an integer into $var, and then I piped $var to Gm. You can see that the
shell now recognizes the contents of $var as a System.Int32, or a 32-bit integer.

15.3 Fun tricks with quotes
Now that we’re talking about variables, it’s a good time to cover a neat PowerShell fea-
ture. So far in this book, I’ve advised that you generally enclose strings within single
quotation marks. There’s a reason for that: PowerShell treats everything enclosed in
single quotation marks as a literal string.

 Consider this example:

PS C:\> $var = 'What does $var contain?'
PS C:\> $var
What does $var contain?

Here, you can see that the $var within single quotes is treated as a literal. In double
quotation marks, however, that’s not the case.

 Check out this trick:

PS C:\> $computername = 'SERVER-R2'
PS C:\> $phrase = "The computer name is $computername"
PS C:\> $phrase
The computer name is SERVER-R2

I started by storing SERVER-R2 in the variable $computername. Next, I stored "The com-
puter name is $computername" in the variable $phrase. When I did so, I used double

quotes. PowerShell will automatically seek out dollar signs within double quotes, and

Download from Wow! eBook <www.wowebook.com>

173Fun tricks with quotes

replace any variables it finds with their contents. So when I displayed the contents of
$phrase, $computername was replaced with SERVER-R2, the contents of the variable.

 This replacement action only happens when the string is initially parsed by the
shell. So, right now, $phrase contains "The computer name is SERVER-R2"—it
doesn’t contain the "$computername" string. I can test that by trying to change the
contents of $computername, and seeing if $phrase updates itself:

PS C:\> $computername = 'SERVER1'
PS C:\> $phrase
The computer name is SERVER-R2

The $phrase variable stayed the same.
 Another facet of this double quotes trick is the PowerShell escape character. This

character is the backtick (`), and on a U.S. keyboard it’s located on one of the upper-
left keys, usually below the Escape key and usually on the same key as the tilde (~) char-
acter. The problem is that, in some fonts, it’s practically indistinguishable from a single
quote. In fact, I usually configure my shell to use the Consolas font, because it makes it
a little bit easier to distinguish the backtick than the Lucida Console or Raster font.

TRY IT NOW Click the control box in the upper-left corner of your PowerShell
window, and select Properties. On the Font tab, select the Consolas font.
Click OK, and then type a single quote and a backtick so that you can see the
difference between these characters. Figure 15.1 shows what it looks like on
my system. Can’t see the difference? I barely can, either, even when using a
pretty large font size. It’s a tough distinction, but make sure you’re comfort-
able distinguishing between them in whatever font face and size you select.

Figure 15.1 Setting a font that makes it

easier to distinguish the backtick
character from the single quote

Download from Wow! eBook <www.wowebook.com>

174 CHAPTER 15 Variables: a place to store your stuff

So what does this escape character do? It removes whatever special meaning might be
associated with the character after it, or in some cases, it adds special meaning to the
following character. Here’s an example of this first usage:

PS C:\> $computername = 'SERVER-R2'
PS C:\> $phrase = "`$computername contains $computername"
PS C:\> $phrase
$computername contains SERVER-R2

When I assigned the string to $phrase, I used $computername twice. The first time, I
preceded the dollar sign with a backtick. Doing so took away the dollar sign’s special
meaning as a variable indicator, and made it a literal dollar sign. You can see in the
final output, on the last line, that $computername was stored in the variable. I didn’t
use the backtick the second time, so $computername was replaced with the contents of
that variable.

 Now, here’s an example of the second way a backtick can work:

PS C:\> $phrase = "`$computername`ncontains`n$computername"
PS C:\> $phrase
$computername
contains
SERVER-R2

Look carefully, and you’ll notice two `n in the phrase—one after the first $computer-
name and one after contains. In this example, the backtick is adding a special mean-
ing. Normally, an “n” is just a letter, but with the backtick in front of it, it becomes a
carriage return and line feed (think n for new line).

 Run help about_escape for more information, including a list of other special
escape characters. You can, for example, use an escaped “t” to insert a tab, or an
escaped “a” to make your computer beep (think a for alert).

15.4 Storing lots of objects in a variable
At this point, we’ve been working with variables that contain a single object, and those
objects have all been simple values. We’ve worked directly with the object itself, rather
than with properties or methods. Now, let’s try putting a bunch of objects into a variable.

 One way to do so is to use a comma-separated list, because PowerShell recognizes
those lists as collections of objects:

PS C:\> $computers = 'SERVER-R2','SERVER1','localhost'
PS C:\> $computers
SERVER-R2
SERVER1
Localhost

Notice that I was careful to put the commas outside the quotation marks. If I’d put
them inside, I would have had a single object that included commas and three com-
puter names. This way, I get three distinct objects, all of which are String types. As
you can see, when I examined the contents of the variable, PowerShell displayed each

object on its own line.

Download from Wow! eBook <www.wowebook.com>

175Storing lots of objects in a variable

 You can also access individual elements, one at a time. To do so, specify an index
number for the object you want, in square brackets. The first object is always at index
number 0, the second is at index number 1, and so forth. You can also use an index of
-1 to access the last object, -2 for the next-to-the-last object, and so on.

PS C:\> $computers[0]
SERVER-R2
PS C:\> $computers[1]
SERVER1
PS C:\> $computers[-1]
localhost
PS C:\> $computers[-2]
SERVER1

The variable itself has a property that lets you see how many objects are in it:

PS C:\> $computers.count
3

Beyond that special property, you can access the properties and methods of the
objects inside the variable as if they were properties and methods of the variable itself.
This is a bit easier to see, at first, with a variable that contains a single object:

PS C:\> $computername.length
9
PS C:\> $computername.toupper()
SERVER-R2
PS C:\> $computername.tolower()
server-r2
PS C:\> $computername.replace('R2','2008')
SERVER-2008
PS C:\> $computername
SERVER-R2

Here, I’m using the $computername variable that I created earlier in the chapter. If
you remember, that variable contained an object of the type System.String, and you
should have seen the complete list of properties and methods of that type when you
piped a string to Gm. I’ve used the Length property, as well as the ToUpper(),
ToLower(), and Replace() methods. In each case, I have to follow the method name
with parentheses, even though neither ToUpper() nor ToLower() require any parame-
ters inside those parentheses. Also, none of these methods changed what was in the
variable—you can see that on the last line. Instead, each method created a new
String based on the original one, as modified by the method.

 When a variable contains multiple objects, this gets a bit trickier. Even if every
object inside the variable is of the same type, as is the case with my $computers vari-
able, you can’t call a method, or access a property, on multiple objects at the same time. If you
try to do so, you’ll get an error:

PS C:\> $computers.toupper()
Method invocation failed because [System.Object[]] doesn't contain a metho

d named 'toupper'.

Download from Wow! eBook <www.wowebook.com>

176 CHAPTER 15 Variables: a place to store your stuff

At line:1 char:19
+ $computers.toupper <<<< ()
 + CategoryInfo : InvalidOperation: (toupper:String) [], Runt
 imeException
 + FullyQualifiedErrorId : MethodNotFound

Instead, you have to specify which object within the variable you want, and then access
a property or execute a method:

PS C:\> $computers[0].tolower()
server-r2
PS C:\> $computers[1].replace('SERVER','CLIENT')
CLIENT1

Again, these methods are producing new strings, not changing the ones inside the
variable. You can test that by examining the contents of the variable:

PS C:\> $computers
SERVER-R2
SERVER1
Localhost

What if you wanted to change the contents of the variable? You’d simply assign a new
value into one of the existing objects:

PS C:\> $computers[1] = $computers[1].replace('SERVER','CLIENT')
PS C:\> $computers
SERVER-R2
CLIENT1
Localhost

You can see that I changed the second object in the variable, rather than producing a
new string.

 By the way, I want to show you two other options for working with the properties
and methods of a bunch of objects contained in a variable. The previous couple of
examples only executed methods on a single object within the variable. If I wanted to
run the ToLower() method on every object within the variable, and store the results
back into the variable, I would do this:

PS C:\> $computers = $computers | ForEach-Object { $_.ToLower() }
PS C:\> $computers
server-r2
client1
localhost

This is a bit complicated, so let’s break it down in figure 15.2. I started the pipeline
with $computers =, which means the results of the pipeline will be stored in that vari-
able. Those results will overwrite whatever was in the variable previously. The pipeline
begins with $computers being piped to ForEach-Object. The cmdlet will enumerate
each object in the pipeline (I have three computer names, which are String objects),
and execute its script block for each. Within the script block, the $_ placeholder will

contain one piped-in object at a time, and I’m executing the ToLower() method of

Download from Wow! eBook <www.wowebook.com>

177Declaring a variable’s type

each object. The new String objects produced by ToLower() will be placed into the
pipeline—and into the $computers variable.

 You can do something similar with properties, by using Select-Object. This will
select the Length property of each object that I pipe to the cmdlet:

PS C:\> $computers | select-object length

 Length

 9
 7
 9

Because the property is numeric, PowerShell right-aligns the output.

15.5 Declaring a variable’s type
So far, we’ve just stuck objects into variables and let PowerShell figure out what kind of
object was what. The fact is that PowerShell doesn’t care what kinds of objects get put
into the box. You, however, might care.

 For example, suppose you have a variable that you expect to contain a number.
You plan to do some arithmetic with that number, and you ask a user to input that
number. Here’s an example, which you can type directly into the command line:

PS C:\> $number = Read-Host "Enter a number"
Enter a number: 100
PS C:\> $number = $number * 10
PS C:\> $number
100100100100100100100100100100

TRY IT NOW I haven’t showed you Read-Host yet—I’m saving it for the next
chapter—but its operation should be pretty obvious if you follow along with
this example.

What the heck? 100 multiplied by 10 is 100100100100100100100100100100? What
crazy New Math is that?

 If you’re sharp-eyed, you may have spotted what’s happening. PowerShell didn’t
treat my input as a number; it treated it as a string. Instead of multiplying 100 by 10,
PowerShell duplicated the string 100 ten times. So the result is the string 100, listed ten

Figure 15.2 Using
ForEach-Object to
execute a method against
each object contained
within a variable
times in a row. Oops.

Download from Wow! eBook <www.wowebook.com>

178 CHAPTER 15 Variables: a place to store your stuff

 We can verify that the shell is in fact treating the input as a string:

PS C:\> $number = Read-Host "Enter a number"
Enter a number: 100
PS C:\> $number | gm

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method int CompareTo(System.Object valu...
Contains Method bool Contains(string value)

Yep, piping $number to Gm confirms that the shell sees it as a System.String, not a
System.Int32. There are a couple of ways that we could choose to deal with this prob-
lem, and the easiest for me is the one we’ll use right now. I’m going to tell the shell
that the $number variable should contain an integer, which will force the shell to try to
convert any input to an actual number. I do that by specifying the desired data type,
int, in square brackets immediately prior to the variable’s first use:

PS C:\> [int]$number = Read-Host "Enter a number"
Enter a number: 100
PS C:\> $number | gm

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
CompareTo Method int CompareTo(System.Object value), int CompareT...
Equals Method bool Equals(System.Object obj), bool Equals(int ...
GetHashCode Method int GetHashCode()
GetType Method type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
ToString Method string ToString(), string ToString(string format...

PS C:\> $number = $number * 10
PS C:\> $number
1000

Here, I’ve used [int] to force $number to contain only integers B. After entering my
input, I pipe $number to Gm to confirm that it is indeed an integer, not a string c. At
the end, I can see that the variable was treated as a number and real multiplication
took place d.

 Another benefit of this technique is that the shell will throw an error if it can’t con-
vert the input into a number, because $number is only capable of storing integers:

PS C:\> [int]$number = Read-Host "Enter a number"
Enter a number: Hello
Cannot convert value "Hello" to type "System.Int32". Error: "Input string
was not in a correct format."
At line:1 char:13

Force variable
to [int]bConfirm that

variable is Int32
c

Variable was treated
as number

d

+ [int]$number <<<< = Read-Host "Enter a number"

Download from Wow! eBook <www.wowebook.com>

179Declaring a variable’s type

 + CategoryInfo : MetadataError: (:) [], ArgumentTransformati
 onMetadataException
 + FullyQualifiedErrorId : RuntimeException

That’s a great way to help prevent problems later on down the line, because you’re
assured that $number will contain the exact type of data you expect it to.

 There are many different object types that you can use in place of [int], but these
are some of the ones you’ll use most commonly include:

■ [int]—Integer numbers
■ [single] and [double]—Single-precision and double-precision floating num-

bers (numbers with a decimal portion)
■ [string]—A string of characters
■ [char]—Exactly one character (as in, [char]$c = 'X')
■ [xml]—An XML document; whatever string you assign to this will be parsed to

make sure it contains valid XML markup (for example, [xml]$doc = Get-Con-
tent MyXML.xml)

■ [adsi]—An Active Directory Services Interface (ADSI) query; the shell will exe-
cute the query and place the resulting object or objects into the variable (such
as [adsi]$user = "WinNT:\\MYDOMAIN\Administrator,user")

Specifying an object type for a variable is a great way to prevent certain tricky logic
errors in more complex scripts. Once you specify the object type, PowerShell enforces
it until you explicitly retype the variable:

PS C:\> [int]$x = 5
PS C:\> $x = 'Hello'
Cannot convert value "Hello" to type "System.Int32". Error: "Input string
was not in a correct format."
At line:1 char:3
+ $x <<<< = 'Hello'
 + CategoryInfo : MetadataError: (:) [], ArgumentTransformati
 onMetadataException
 + FullyQualifiedErrorId : RuntimeException

PS C:\> [string]$x = 'Hello'
PS C:\> $x | gm

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method int CompareTo(System.Object valu...

Here, you can see that I started by declaring $x as an integer B, and placing an inte-
ger into it. When I tried to put a string into it c, PowerShell threw an error because it
couldn’t convert that particular string into a number. Later I retyped $x as a string,
and was able to put a string into it d. I confirmed that by piping the variable to Gm

Declares $x as integerb
Creates error by
putting string
into $x

c

Retypes $x
as string

d

Confirms new
type of $x

e

and checking its type name e.

Download from Wow! eBook <www.wowebook.com>

180 CHAPTER 15 Variables: a place to store your stuff

15.6 Commands for working with variables
So far, we’ve just started using variables without formally declaring our intention to do
so. PowerShell doesn’t require advanced variable declaration, and you can’t force it to
do so (VBScript folks who are looking for something like Option Explicit will be dis-
appointed; PowerShell has something called Set-StrictMode, but it isn’t exactly the
same thing). The shell does, however, include commands for working with variables:

■ New-Variable

■ Set-Variable

■ Remove-Variable

■ Get-Variable

■ Clear-Variable

The thing is, you don’t need to use any of these except perhaps Remove-Variable,
which is good for permanently deleting a variable (you can also use the Del command
within the VARIABLE: drive to delete a variable). Every other function—creating new
variables, reading variables, setting variables—can be done using the ad hoc syntax
that I’ve used so far in this chapter, and there are no specific advantages to using these
cmdlets in most cases.

 If you do decide to use these cmdlets, you’ll give your variable name to the cmd-
lets’ -name parameter. This is only the variable name—not including the dollar sign! The
one time you might want to use one of these cmdlets is if you’re working with some-
thing called an out-of-scope variable. Messing with out-of-scope variables is a really poor
practice, and I’m not going to cover it here, but you’ll see it come up in chapter 17.

15.7 Variable best practices
I’ve mentioned most of these practices already, but this is a good time to quickly
review them:

■ Keep variable names meaningful, but succinct. $computername is a great vari-
able name, because it’s clear and concise. $c is a poor name, because it isn’t
clear what it contains. $computer_to_query_for_data is a bit long for my
tastes. Sure, it’s meaningful, but do you really want to type that over and over?

■ Don’t use spaces in variable names. I know you can, but it’s ugly syntax.
■ If a variable will only contain one kind of object, then declare that when you

first use the variable. Doing so can help prevent some confusing logic errors,
and if you’re working in a commercial script development environment (Pri-
malScript is the example I’m thinking of), the editor software can provide code-
hinting features when you tell it what type of object a variable will contain.

15.8 Common points of confusion
The biggest single point of confusion I see new students struggle with is the variable

name. Hopefully, I’ve done a good job of explaining it in this chapter, but always

Download from Wow! eBook <www.wowebook.com>

181Ideas for on your own

remember that the dollar sign isn’t part of the variable’s name. It’s a cue to the shell that
you want to access the contents of a variable; what follows the dollar sign is taken as the
variable’s name.

 The shell has two parsing rules that let it capture the variable name:

■ If the character immediately after the dollar sign is a letter, number, or under-
score, the variable name consists of all the characters following the dollar sign,
up to the next white space (which might be a space, tab, or carriage return).

■ If the character immediately after the dollar sign is an opening curly brace, {,
the variable name is everything after that curly brace up to, but not including,
the closing curly brace, }.

15.9 Lab
Flip back to chapter 12 and refresh your memory on working with background jobs.
For this lab, I’d like you to create a background job that queries the Win32_BIOS
information from two computers (use your computer’s name and “localhost” if you
only have one computer to experiment with). When the job finishes running, I want
you to receive the results of the job into a variable. Then, display the contents of that
variable. Finally, export the variable’s contents to a CliXML file.

15.10 Ideas for on your own
Take a few moments and skim through some of the previous chapters in this book.
Given that variables are primarily designed to store something that you might use
more than once, can you locate anything in the previous chapters where you might
find a use for variables?

 For example, in chapter 10 you learned to create connections to remote comput-
ers. What you did in that chapter was create, use, and close a connection more or less
in one step; wouldn’t it be useful to create the connection, store it in a variable, and
use it for several commands? That’s just one instance of where variables can come in
handy (and I’m going to show you how to do that in chapter 18), so see if you can find
any more examples.
Download from Wow! eBook <www.wowebook.com>

Input and output
So far in this book, we’ve primarily been relying on PowerShell’s native ability to
output tables and lists. As you start to combine commands into more complex
scripts, you’ll probably want to gain more precise control over what’s displayed. You
may also have a need to prompt a user for input. In this chapter, you’ll learn how to
collect that input, and how to display whatever output you might desire.

16.1 Prompting for, and displaying, information
How PowerShell displays and prompts for information depends on how PowerShell
is being run. You see, PowerShell is built as a kind of under-the-hood engine.

 What you interact with is called a host application. The command-line console
that you see when running PowerShell.exe is often called the console host. The
graphical PowerShell ISE is usually called the ISE host or the graphical host. Other
non-Microsoft applications can host the shell’s engine, as well. You interact with the
hosting application, and it passes your commands through to the engine. Whatever
results the engine produces are displayed by the hosting application.

 Figure 16.1 illustrates the relationship between the engine and the various host-
ing applications. Each hosting application is responsible for physically displaying
any output produced by the engine, and for physically collecting any input
requested by the engine. That means output may be displayed, and input collected,
in different ways. In fact, the console host and ISE use very different methods for
collecting input: the console host presents a text prompt within the command line,
but the ISE produces a pop-up dialog box with a text entry area and an OK button.

 I wanted to point out these differences because it can sometimes seem confus-
182

ing to newcomers. Why would one command behave one way in the command-line

Download from Wow! eBook <www.wowebook.com>

183Read-Host

window but behave completely differently in the ISE? It’s because the way in which you
interact with the shell is determined by the hosting application, and not by Power-
Shell itself.

16.2 Read-Host
PowerShell’s Read-Host cmdlet is designed to display a text prompt and then collect
text input from the user. You saw me use this for the first time in the previous chapter,
so the syntax may seem familiar:

PS C:\> read-host "Enter a computer name"
Enter a computer name: SERVER-R2
SERVER-R2

This example highlights two important facts about the cmdlet:

■ A colon is added to the end of the prompt.
■ Whatever the user types is returned as the result of the command (technically,

it’s placed into the pipeline).

You’ll often capture the input into a variable, which looks like this:

PS C:\> $computername = read-host "Enter a computer name"
Enter a computer name: SERVER-R2

TRY IT NOW Time to start following along. At this point, you should have a
valid computer name in the $computername variable. Don’t use SERVER-R2
unless that’s the name of the computer you’re working on!

As I wrote earlier, the ISE will display a dialog box, rather than prompting directly
within the command line, as shown in figure 16.2. Other hosting applications, includ-
ing script editors like PowerGUI, PowerShell Plus, or PrimalScript, will each have their
own way of implementing Read-Host.

Figure 16.1 Various applications are capable
of hosting the PowerShell engine
Download from Wow! eBook <www.wowebook.com>

184 CHAPTER 16 Input and output

There isn’t much else to say about Read-Host: it’s a useful cmdlet, but not a particu-
larly exciting one. In fact, after introducing Read-Host in most classes, the usual ques-
tion is, “Is there a way to always display a graphical input box?” Many administrators
want to deploy scripts to their users, and they don’t want them to have to enter infor-
mation into a command-line interface (it isn’t very “Windows-like,” after all). The
answer is, yes, but it isn’t very straightforward. The final result is shown in figure 16.3.

 To do this, we’re going to have to dive into the .NET Framework itself. You’ll start
with this command:

PS C:\> [void][System.Reflection.Assembly]::LoadWithPartialName('Microsoft

➥ .VisualBasic')

Type that all as a single command. You only have to do this once in a given shell ses-
sion, but it doesn’t hurt to run the command a second time.

 This command loads a portion of the .NET Framework, Microsoft.VisualBasic, that
PowerShell doesn’t automatically load. This portion of the framework contains most
of the Visual Basic–centric framework elements, including things like graphical input
boxes. Here’s what the command is doing:

■ The [void] part is converting the result of the command into the void data
type. You learned how to do this kind of conversion with integers in the previ-

Figure 16.2 The ISE displays a dialog box for Read-Host.
ous chapter; the void data type is a special one that means “throw the result

Download from Wow! eBook <www.wowebook.com>

185Read-Host

away.” In other words, we don’t want to see the result of this command, so we
convert the result to void. Another way to do the same thing would be to pipe
the result to Out-Null.

■ Next, we’re accessing the System.Reflection.Assembly type, which represents
our application (which is PowerShell). I’ve enclosed the type name in square
brackets, as if I were declaring a variable to be of that type. But rather than
declaring a variable, we’re using two colons to access a static method of the type.
Static methods exist without us having to create an instance of the type.

■ The static method we’re using is LoadWithPartialName(), which accepts the
name of the framework component I want to load.

If all of that is as clear as mud, don’t worry; you can use the command as-is without
needing to understand how it works. Once the right bits of the framework are loaded,
you can use them, and that’s done like this:

PS C:\> $computername = [Microsoft.VisualBasic.Interaction]::InputBox('Ente

➥ r a computer name','Computer Name','localhost')

I’m using a static method again, from the Microsoft.VisualBasic.Interaction
type, which I just loaded into memory with the previous command. Again, if the “static

Figure 16.3 Creating a graphical input box in Windows PowerShell
method” stuff doesn’t make sense, don’t worry—use this command as-is.

Download from Wow! eBook <www.wowebook.com>

186 CHAPTER 16 Input and output

 The three bits you can change are the parameters of the InputBox() method:

■ The first parameter is the text for your prompt.
■ The second parameter is the title for the prompt’s dialog box.
■ The third parameter, which can be left blank or omitted entirely, is the default

value that you want prefilled in the input box.

This is definitely more complicated than using Read-Host, but if you insist on a dialog
box, this is the best way to achieve that.

16.3 Write-Host
Now that you can collect input, you’ll want some way of displaying output. The Write-
Host cmdlet is one way—not always the best way, but it’s available to you, and it’s
important that you understand how it works.

 As figure 16.4 illustrates, Write-Host runs in the pipeline like any other cmdlet,
but it doesn’t place anything into the pipeline. Instead, it writes directly to the hosting
application’s screen. Because it does that, it’s able to use alternate foreground and
background colors, through its -foregroundColor and -backgroundColor command-
line parameters.

TRY IT NOW You’ll definitely want to run this command yourself to see the
colorful results.

PS C:\> write-host "COLORFUL!" -fore yellow -back magenta
COLORFUL!

Write-Host should usually be used only when you need to display a specific message,
perhaps using color to draw attention to it. This isn’t the appropriate way to produce
normal output from a script or command.

 For example, you should never use Write-Host to manually format a table—there
are better ways to produce the output, using techniques that enable PowerShell itself

Figure 16.4 Write-
Host bypasses the
pipeline and writes
directly to the hosting

application’s display.

Download from Wow! eBook <www.wowebook.com>

187Write-Output

to handle the formatting. We won’t be covering those techniques in this chapter, but
in chapter 19 you’ll play with them extensively. Write-Host is also not the best way to
produce error messages, warnings, debugging messages, and so on—again, there are
more specific ways to do those things, and you’ll see those in this chapter. You proba-
bly won’t use Write-Host much, if you’re using the shell correctly.

16.4 Write-Output
Unlike Write-Host, Write-Output sends objects into the pipeline. Because it isn’t
writing directly to the display, it doesn’t permit you to specify alternative colors or any-
thing. In fact, Write-Output (or its alias, Write) isn’t technically designed to display
output at all. As I said, it sends objects into the pipeline—it’s the pipeline itself that
eventually displays those objects. Figure 16.5 illustrates how this works.

 Refer back to chapter 8 for a quick review of how objects go from the pipeline to
the screen. Here’s the basic process:

1 Write-Output puts the String object "Hello" into the pipeline.
2 There’s nothing else in the pipeline, so "Hello" travels to the end of the pipe-

line, where Out-Default always sits.
3 Out-Default passes the object to Out-Host.
4 Out-Host asks PowerShell’s formatting system to format the object. Because in

this example it’s a simple String, the formatting system returns the text of the
string.

5 Out-Host places the formatted result onto the screen.

The results are similar to what you’d get using Write-Host, but the object took a very
different path to get there. That path is important, because the pipeline could contain
other things. For example, consider this command (which you’re welcome to try):

PS C:\> write-output "Hello" | where-object { $_.length -gt 10 }

Figure 16.5 Write-
Output puts objects
into the pipeline,
which in some cases
will eventually result
in those objects being

displayed.

Download from Wow! eBook <www.wowebook.com>

188 CHAPTER 16 Input and output

There’s no output from this command, and figure 16.6 illustrates why. "Hello" was
placed into the pipeline. Before it got to Out-Default, however, it had to pass through
Where-Object, which filtered out anything having a Length property of less than or
equal to 10, which in this case included our poor "Hello". So our "Hello" got
dropped out of the pipeline. There was nothing left in the pipeline for Out-Default,
so there was nothing to pass to Out-Host, so nothing was displayed.

 Contrast that command with this one:

PS C:\> write-host "Hello" | where-object { $_.length -gt 10 }
Hello

All I did was replace Write-Output with Write-Host. This time, "Hello" went directly
to the screen, not into the pipeline. Where-Object had no input, and produced no
output, so nothing was displayed by Out-Default and Out-Host. But because "Hello"
had been written directly to the screen, we saw it anyway.

Write-Output may seem new, but it turns out you’ve been using it all along. It’s the
shell’s default cmdlet. When you tell the shell to do something that isn’t actually a
command, the shell passes whatever you typed to Write-Output behind the scenes.

16.5 Other ways to write
PowerShell has a few other ways of producing output. None of these write to the pipe-
line like Write-Output does; they work a bit more like Write-Host. All of them, how-
ever, produce output in a way that can be suppressed.

 The shell comes with built-in configuration variables for each of these alternative
output methods. When the configuration variable is set to Continue, the commands

Figure 16.6 Placing
objects into the pipeline
means they can be
filtered out before
they’re displayed.
I’m about to show you do indeed produce output. When the configuration variable is

Download from Wow! eBook <www.wowebook.com>

189Lab

set to SilentlyContinue, the associated output command produces nothing. Table
16.1 contains the list of commands.

Write-Error works a bit differently because it actually writes an error to PowerShell’s
error stream. Chapter 22 will discuss errors in a bit more detail, and will provide more
information on how $ErrorActionPreference can be used.

 There’s also a Write-Progress cmdlet that can display progress bars, but it works
entirely differently. Feel free to read its help for more information and for examples,
but we won’t be covering it in this chapter.

 To use any of these cmdlets, first make sure that its associated configuration vari-
able is set to Continue. If it’s set to SilentlyContinue, which is the default for a cou-
ple of them, you won’t see any output at all. Then, use the cmdlet to output a message.

 Note that some PowerShell hosting applications may display the output from these
cmdlets in a different location. In PrimalScript, for example, debugging text is written
to a different output pane than the script’s main output, so that the debug text can be
more easily separated for analysis. You’ll see more about Write-Debug in chapter 23.

16.6 Lab
Write-Host and Write-Output can be a bit tricky to work with. See how many of these
tasks you can complete, and if you get completely stuck, it’s okay to peek at the sample
answers available on MoreLunches.com.

1 Use Write-Output to display the result of 100 multiplied by 10.
2 Use Write-Host to display the result of 100 multiplied by 10.
3 Prompt the user to enter a name, and then display that name in yellow text.

Table 16.1 Alternative output cmdlets

Cmdlet Purpose Configuration variable

Write-Warning Displays warning text, in yellow by default
and preceded by the label “WARNING:”

$WarningPreference
(Continue by default)

Write-Verbose Displays additional informative text, in
yellow by default and preceded by the
label “VERBOSE:”

$VerbosePreference
(SilentlyContinue by default)

Write-Debug Displays debugging text, in yellow by
default and preceded by the label
“DEBUG:”

$DebugPreference
(SilentlyContinue by default)

Write-Error Produces an error message $ErrorActionPreference
(Continue by default)
Download from Wow! eBook <www.wowebook.com>

190 CHAPTER 16 Input and output

4 Prompt the user to enter a name, and then display that name only if it’s longer
than 5 characters. Do this all in a single line—don’t use a variable.

That’s all for this lab. Because these cmdlets are all pretty straightforward, I want you
to spend some more time experimenting with them on your own. Be sure to do
that—there are some ideas in the next section.

16.7 Ideas for on your own
Spend some time getting comfortable with all of the cmdlets in this chapter. Make
sure you can display verbose output, accept input, and even display a graphical input
box. You’ll be using the commands from this chapter a lot from here on out, so you
should read their help files and even jot down a quick syntax reminder for future
reference.
Download from Wow! eBook <www.wowebook.com>

You call this scripting?
So far, you could have accomplished everything in this book using PowerShell’s
command-line interface. You haven’t had to write a single script. That’s a big deal
for me, because I see a lot of administrators initially shy away from scripting,
(rightly) perceiving it as a kind of programming, and (correctly) feeling that learn-
ing it can sometimes take more time than it’s worth. Hopefully, you’ve seen how
much you can accomplish in PowerShell without having to become a programmer.

 But at this point, you may also be starting to feel that constantly retyping the
same commands, over and over, is going to become pretty tedious. You’re right, so
in this chapter we’re going to dive into PowerShell scripting—but we’re still not
going to be programming. Instead, we’re going to focus on scripts as little more
than a way of saving our fingers from unnecessary retyping.

17.1 Not programming … more like batch files
Most Windows administrators have, at one point or another, created a command-
line batch file (which usually have a .BAT or .CMD filename extension). These are
nothing more than simple text files that you can edit with Windows Notepad, con-
taining a list of commands to be executed in a specific order. Technically, you call
those commands a script because, like a Hollywood script, they tell the performer
(your computer) exactly what to do and say, and in what order to do and say it. But
batch files rarely look like programming, in part because the Cmd.exe shell has a
very limited language that doesn’t permit incredibly complicated scripts.

 PowerShell scripts—or batch files, if you prefer—work similarly. Simply list the
commands that you want to run, and the shell will execute those commands in the
order specified. You can create a script by simply copying a command from the host
191

window and pasting it into Notepad. Of course, Notepad is a pretty horrible text

Download from Wow! eBook <www.wowebook.com>

192 CHAPTER 17 You call this scripting?

editor. I expect you’ll be happier with the PowerShell ISE, or with a third-party editor
like PowerGUI, PrimalScript, or PowerShell Plus.

 The ISE, in fact, makes “scripting” practically indistinguishable from using the
shell interactively. By using the ISE’s script pane, you simply type the command or
commands you want to run, and then click the Run button in the toolbar to execute
those commands. Click Save and you’ve created a script without having to copy and
paste anything at all.

17.2 Making commands repeatable
The idea behind PowerShell scripts is, first and foremost, to make it easier to run a
given command over and over, without having to manually retype it every time. That
being the case, we should come up with a command that we want to run over and over
again, and use that as an example throughout this chapter. I want to make this
decently complex, so I’ll start with something from WMI and add in some filtering,
sorting, and other stuff.

 At this point, I’m going to switch to using the PowerShell ISE instead of the normal
console window, because the ISE will make it easier for me to migrate my command
into a script. Frankly, the ISE makes it easier to type complex commands, because you
get a full-screen editor instead of working on a single line within the console host.

 Here’s my command:

Get-WmiObject -class Win32_LogicalDisk -computername localhost

➥ -filter "drivetype=3" |
 Sort-Object -property DeviceID |
 Format-Table -property DeviceID,
 @{l='FreeSpace(MB)';e={$_.FreeSpace / 1MB -as [int]}},
 @{l='Size(GB';e={$_.Size / 1GB -as [int]}},
 @{l='%Free';e={$_.FreeSpace / $_.Size * 100 -as [int]}}

Figure 17.1 shows how I’ve entered this into the ISE. Notice that I selected the three-
pane layout by using the toolbar button set on the far right. Also notice that I format-
ted my command so that each physical line ends in either a pipe character or a
comma. By doing so, I’m forcing the shell to recognize these multiple lines as a single,
one-line command. You could do the same thing in the console host, but this format-
ting is especially effective in the ISE because it makes my command a lot easier to read.
Also notice that I’ve used full cmdlet names and parameter names and that I’ve speci-
fied every parameter name rather than using positional parameters. All of that will
make my script easier to read and follow either for someone else, or in the future
when I might have forgotten what my original intent was.

 I’ve run the command by clicking the green Run toolbar icon in the ISE (you could
also press F5) to test it, and my output shows that it’s working perfectly. Here’s a neat
trick in the ISE: you can highlight a portion of your command and press F8 to just run
the highlighted portion. Because I’ve formatted my command so that there’s one dis-
tinct command per physical line, that makes it easy for me to test my command bit by

bit. I can highlight and run the first line independently. If I’m satisfied with the output,

Download from Wow! eBook <www.wowebook.com>

193Parameterizing commands

I can highlight the first and second lines, and run them. If it worked as expected, I can
run the whole command.

 At this point, I can save the command—I guess we can start calling it a script now!
I’ll save it as Get-DiskInventory.ps1. I like giving my scripts cmdlet-style verb-noun
names. You can see how this script is going to start to look and work a lot like a cmdlet,
so it makes sense to give it a cmdlet-style name.

TRY IT NOW I’m assuming that you have already completed chapter 14 and
enabled scripting by setting a more permissive execution policy. If you
haven’t done so, then you should flip back to chapter 14 and complete its
hands-on lab so that scripts will run in your copy of PowerShell.

17.3 Parameterizing commands
When you think about running a command over and over, you might realize that some
portion of the command is going to have to change from time to time. For example,
suppose you wanted to give Get-DiskInventory.ps1 to some of your colleagues, who
might be less experienced in using PowerShell. It’s a pretty complex, hard-to-type com-
mand, and they might appreciate having it bundled into an easier-to-run script. But, as
written, the script only runs against the local computer. You can certainly imagine that
some of your colleagues might want to get a disk inventory from one or more remote

Figure 17.1 Entering and running a command in the ISE
computers instead.

Download from Wow! eBook <www.wowebook.com>

194 CHAPTER 17 You call this scripting?

 One option would be to have them open up the script and change the -computer-
name parameter’s value. But it’s entirely possible that they wouldn’t be comfortable
doing so, and there’s a chance that they’ll change something else and break the script
entirely. It would be better to provide a formal way for them to pass in a different com-
puter name (or set of names). At this stage, we need to identify the things that might
need to change when the command is run, and replace those things with variables.

 We’ll set the computer name variable to a static value for now, so that we can still
test the script. This listing shows my revised script.

$computername = 'localhost'
Get-WmiObject -class Win32_LogicalDisk `
 -computername $computername `
 -filter "drivetype=3" |
 Sort-Object -property DeviceID |
 Format-Table -property DeviceID,
 @{l='FreeSpace(MB)';e={$_.FreeSpace / 1MB -as [int]}},
 @{l='Size(GB';e={$_.Size / 1GB -as [int]}},
 @{l='%Free';e={$_.FreeSpace / $_.Size * 100 -as [int]}}

I’ve done three things here, two of which are functional and one of which is purely
cosmetic:

■ I’ve added a variable, $computername, and set it equal to localhost B. I’ve
noticed that most PowerShell commands that accept a computer name use the
parameter name -computername, and I want to duplicate that convention,
which is why I chose the variable name that I did.

■ I’ve replaced the value for the -computername parameter with my variable d.
Right now, the script should run exactly the same as it did before (and I tested
to make sure it does), because I’ve put localhost into the $computername
variable.

■ I added a backtick after the -computername parameter and its value c. This
escapes, or takes away the special meaning of, the carriage return at the end of
the line. That tells PowerShell that the next physical line is part of this same
command. You don’t need to do that when the line ends in a pipe character or
a comma, but in order to fit the code within this book, I needed to break the
line a bit before the pipe character. This will only work if the backtick character
is the last thing on the line!

Once again, I’ve been careful to run my script and verify that it’s still working. I always
do that after making any kind of change, to make sure I haven’t introduced some ran-
dom typo or other error.

17.4 Creating a parameterized script
Now that I’ve identified the elements of my script that might change from time to time,

Listing 17.1 Get-DiskInventory.ps1 with a parameterized command

Sets new variableb

Breaks line
with backtickc

Uses variabled
I need to provide a way for someone else to specify new values for those elements. In

Download from Wow! eBook <www.wowebook.com>

195Creating a parameterized script

other words, I need to take that hardcoded $computername variable and turn it into an
input parameter.

 PowerShell makes this really easy, and the next listing shows the result.

param (
 $computername = 'localhost'
)
Get-WmiObject -class Win32_LogicalDisk -computername $computername `
 -filter "drivetype=3" |
 Sort-Object -property DeviceID |
 Format-Table -property DeviceID,
 @{l='FreeSpace(MB)';e={$_.FreeSpace / 1MB -as [int]}},
 @{l='Size(GB';e={$_.Size / 1GB -as [int]}},
 @{l='%Free';e={$_.FreeSpace / $_.Size * 100 -as [int]}}

All I did was add a Param() block around my variable declaration B. This defines
$computername as a parameter, and specifies that localhost is the default value to be
used if the script is run without a computer name being specified. You don’t have to pro-
vide a default value, but I like to do so when there’s a reasonable value that I can think of.

 All parameters declared in this fashion are both named and positional, meaning
that I can now run the script from the command line in any of these ways:

PS C:\> .\Get-DiskInventory.ps1 server-r2
PS C:\> .\Get-DiskInventory.ps1 -computername server-r2
PS C:\> .\Get-DiskInventory.ps1 -comp server-r2

In the first instance, I used the parameter positionally, providing a value but not the
parameter name. In the second and third instance, I specified the parameter name,
but in the third instance I abbreviated that name in keeping with PowerShell’s normal
rules for parameter name abbreviation. Note that in all three cases I had to specify a
path (.\, which is the current folder) to the script, because the shell won’t automati-
cally search the current directory to find the script.

 You can specify as many parameters as you need to, by separating them with com-
mas. For example, suppose that I wanted to also parameterize the filter criteria. Right
now, it’s only retrieving logical disks of type 3, which represents fixed disks. I could
change that to a parameter, as shown next.

param (
 $computername = 'localhost',
 $drivetype = 3
)
Get-WmiObject -class Win32_LogicalDisk -computername $computername `
 -filter "drivetype=$drivetype" |
 Sort-Object -property DeviceID |
 Format-Table -property DeviceID,

Listing 17.2 Get-DiskInventory.ps1, with an input parameter

Listing 17.3 Get-DiskInventory.ps1, with an additional parameter

Param blockb

Specifying additional
parameter

Using parameter
 @{l='FreeSpace(MB)';e={$_.FreeSpace / 1MB -as [int]}},

Download from Wow! eBook <www.wowebook.com>

196 CHAPTER 17 You call this scripting?

 @{l='Size(GB';e={$_.Size / 1GB -as [int]}},
 @{l='%Free';e={$_.FreeSpace / $_.Size * 100 -as [int]}}

Notice that I took advantage of PowerShell’s ability to replace variables with their val-
ues inside of double quotation marks (you learned about that trick in chapter 15).

 I can run this script in any of the three original ways, although I could also omit
either parameter if I wanted to use the default value for it. Here are some permutations:

PS C:\> .\Get-DiskInventory.ps1 server-r2 3
PS C:\> .\Get-DiskInventory.ps1 -comp server-r2 -drive 3
PS C:\> .\Get-DiskInventory.ps1 server-r2
PS C:\> .\Get-DiskInventory.ps1 -drive 3

In the first instance, I specified both parameters positionally, in the order in which
they’re declared within the Param() block. In the second case, I specified abbreviated
parameter names for both. The third time, I omitted -drivetype entirely, using the
default value of 3. In the last instance, I left off -computername, using the default value
of localhost.

17.5 Documenting your script
Only a truly mean person would create a useful script and not tell anyone how to use
it. Fortunately, PowerShell makes it easy to add help into your script, using comments.
You’re welcome to add typical programming-style comments to your scripts, but if
you’re using full cmdlet and parameter names, sometimes your scripts’ operation will
be obvious. By using a special comment syntax, however, you can provide help that
mimics PowerShell’s own help files.

 The next listing shows what I’ve added to my script.

<#
.SYNOPSIS
Get-DiskInventory retrieves logical disk information from one or
more computers.
.DESCRIPTION
Get-DiskInventory uses WMI to retrieve the Win32_LogicalDisk
instances from one or more computers. It displays each disk's
drive letter, free space, total size, and percentage of free
space.
.PARAMETER computername
The computer name, or names, to query. Default: Localhost.
.PARAMETER drivetype
The drive type to query. See Win32_LogicalDisk documentation
for values. 3 is a fixed disk, and is the default.
.EXAMPLE
Get-DiskInventory -computername SERVER-R2 -drivetype 3
#>
param (
 $computername = 'localhost',

Listing 17.4 Adding help to Get-DiskInventory.ps1
 $drivetype = 3
)

Download from Wow! eBook <www.wowebook.com>

197Documenting your script

Get-WmiObject -class Win32_LogicalDisk -computername $computername `
 -filter "drivetype=$drivetype" |
 Sort-Object -property DeviceID |
 Format-Table -property DeviceID,
 @{l='FreeSpace(MB)';e={$_.FreeSpace / 1MB -as [int]}},
 @{l='Size(GB';e={$_.Size / 1GB -as [int]}},
 @{l='%Free';e={$_.FreeSpace / $_.Size * 100 -as [int]}}

Normally, PowerShell ignores anything on a line that follows a # symbol, meaning that
designates a line as a comment. I’ve used a <# #> block comment syntax instead,
because I had several lines of comments and didn’t want to have to start each line with
a separate # character.

 Now I can drop to the normal console host and ask for help by running help
.\Get-DiskInventory (again, you have to provide a path because this is a script and
not a built-in cmdlet). Figure 17.2 shows the results, which proves that PowerShell is
reading those comments and creating a standard help display. I can even run help
.\Get-DiskInventory -full to get full help, including parameter information and
my example. Figure 17.3 shows those results.

 These special comments, called comment-based help, must appear at the begin-
ning of your script file. There are several keywords in addition to .DESCRIPTION,
.SYNOPSIS, and the others I’ve used. For a full list, run help about_comment_

based_help in PowerShell.
Figure 17.2 Viewing the help by using the normal help command

Download from Wow! eBook <www.wowebook.com>

198 CHAPTER 17 You call this scripting?

17.6 One script, one pipeline
I normally tell folks that anything in a script will run exactly as if you manually typed it
into the shell, or if you copied the script to the clipboard and pasted it into the shell.
That’s not entirely true, though.

 Consider this simple script:

Get-Process
Get-Service

Just two commands. But what happens if you were to type those commands into the
shell manually, hitting Return after each?

TRY IT NOW You’re going to have to run these commands on your own to see
the results; they create fairly long output and it won’t fit well within this book
or even in a screenshot.

When you run the commands individually, you’re creating a new pipeline for each com-
mand. At the end of each pipeline, PowerShell looks to see what needs to be formatted,
and creates the tables that you undoubtedly saw. The key here is that each command runs
in a separate pipeline. Figure 17.4 illustrates this: two completely separate commands, two

Figure 17.3 Help options like -example, -detailed, and -full are supported for
comment-based help.
individual pipelines, two formatting processes, and two different-looking sets of results.

Download from Wow! eBook <www.wowebook.com>

199One script, one pipeline

You may think I’m crazy for taking so much time to explain something that probably
seems obvious, but it’s important. Here’s what happens when you run those two com-
mands individually:

1 You run Get-Process.
2 The command places Process objects into the pipeline.
3 The pipeline ends in Out-Default, which picks up the objects.
4 Out-Default passes the objects to Out-Host, which calls on the formatting sys-

tem to produce text output (you learned about this in chapter 8).
5 The text output appears on the screen.
6 You run Get-Service.
7 The command places Service objects into the pipeline.
8 The pipeline ends in Out-Default, which picks up the objects.
9 Out-Default passes the objects to Out-Host, which calls on the formatting sys-

tem to produce text output.
10 The text output appears on the screen.

So you’re now looking at a screen that contains the results from two commands. I want
you to put those two commands into a script file. Name it Test.ps1 or something simple.
Before you run the script, though, copy those two commands onto the clipboard. In the
ISE, you can highlight both lines of text and press Ctrl-C to get them into the clipboard.

 With those commands in the clipboard, go to the PowerShell console host and

Figure 17.4 Two commands, two pipelines, and
two sets of output in a single console window.
press Enter. That will paste the commands from the clipboard into the shell. They

Download from Wow! eBook <www.wowebook.com>

200 CHAPTER 17 You call this scripting?

should execute exactly the same way, because the carriage returns also get pasted.
Once again, you’re running two distinct commands in two separate pipelines.

 Now go back to the ISE and run the script. Different results, right? Why is that?
 In PowerShell, every command executes within a single pipeline, and that includes

scripts. Within a script, any command that produces pipeline output will be writing to
a single pipeline: the one that the script itself is running in. Take a look at figure 17.5.

 I’ll try to explain what happened:

1 The script runs Get-Process.
2 The command places Process objects into the pipeline.
3 The script runs Get-Service.
4 The command places Service objects into the pipeline.
5 The pipeline ends in Out-Default, which picks up both kinds of objects.
6 Out-Default passes the objects to Out-Host, which calls on the formatting sys-

tem to produce text output.
7 Because the Process objects are first, the shell’s formatting system selects a for-

mat appropriate to processes. That’s why they look normal. But then the shell
runs into the Service objects. It can’t produce a whole new table at this point,
so it winds up producing a list.

8 The text output appears on the screen.

This different output occurs because the script wrote two kinds of objects to a single
pipeline. This is the important difference between putting commands into a script
and running them manually: within a script, you only have one pipeline to work with.
Normally, your scripts should strive to only output one kind of object, so that Power-

Figure 17.5 All commands within a script
run within that script’s single pipeline.
Shell can produce sensible text output.

Download from Wow! eBook <www.wowebook.com>

201A quick look at scope

17.7 A quick look at scope
The last topic we need to visit is scope. Scopes are a form of container for certain types
of PowerShell elements, primarily aliases, variables, and functions.

 The shell itself is the top-level scope and is called the global scope. When you run a
script, a new scope is created around that script, and it’s called the script scope. The
script scope is subsidiary to the global scope and is said to be a child of the global
scope, which is the script scope’s parent. Functions (which you’ll learn about in chap-
ter 19) also get their own private scope.

 Figure 17.6 illustrates these scope relationships,
with the global scope containing its children, and
those containing their own children, and so forth.

 A scope only lasts as long as needed to execute
whatever is in the scope. That means the global scope
only exists while PowerShell is running, a script scope
only exists while that script is running, and so forth.
Once whatever it is stops running, the script vanishes,
taking everything inside it with it. PowerShell has
some very specific—and sometimes confusing—rules
for scoped elements like aliases, variables, and functions, but the main rule is this: If
you try to access a scoped element, PowerShell sees if it exists within the current
scope. If it doesn’t, PowerShell sees if it exists in the current scope’s parent. It contin-
ues going up the relationship tree until it gets to the global scope.

TRY IT NOW In order to get the proper results, it’s important that you follow
these steps carefully and precisely.

 Let’s see this in action. Follow these steps:

1 Close any PowerShell or PowerShell ISE windows you may have open, so that
you can start from scratch.

2 Open a new PowerShell window, and a new PowerShell ISE window.
3 In the ISE, create a script that contains one line: Write $x
4 Save the script as C:\Scope.ps1.
5 In the regular PowerShell window, run C:\Scope. You shouldn’t see any output.

When the script ran, a new scope was created for it. The $x variable didn’t exist
in that scope, so PowerShell went to the parent scope—the global scope—to see
if $x existed there. It didn’t exist there, either, so PowerShell decided that $x
was empty, and wrote that (meaning, nothing) as the output.

6 In the normal PowerShell window, run $x = 4. Then, run C:\Scope again. This
time, you should see 4 as output. The variable $x still wasn’t defined in the
script scope, but PowerShell was able to find it in the global scope, and so the
script used that value.

7 In the ISE, add $x = 10 to the top of the script (before the existing Write

Figure 17.6 Global, script, and
function (private) scopes
command), and save the script.

Download from Wow! eBook <www.wowebook.com>

202 CHAPTER 17 You call this scripting?

8 In the normal PowerShell window, run C:\Scope again. This time, you see 10 as
output. That’s because $x was defined within the script scope, and the shell
didn’t need to look in the global scope. Now run $x in the shell. You’ll see 4,
proving that the value of $x within the script scope didn’t affect the value of $x
within the global scope.

One important concept here is that when a scope defines a variable, alias, or function,
that scope loses access to any variables, aliases, or functions having the same name in a
parent scope. The locally defined element will always be the one PowerShell uses. For
example, if you put New-Alias Dir Get-Service into a script, then within that script
the alias Dir will run Get-Service instead of the usual Get-ChildItem. (In reality, the
shell probably won’t let you do that, because it protects the built-in aliases from being
redefined.) By defining the alias within the script’s scope, you prevent the shell from
going to the parent scope and finding the normal, default Dir. Of course, the script’s
redefinition of Dir will only last for the execution of that script, and the default Dir
defined in the global scope will remain unaffected.

 It’s easy to let this scope stuff confuse you. You can avoid confusion by never rely-
ing on anything that’s in any scope other than the current one. So before you try to
access a variable within a script, make sure you’ve already assigned it a value within
that same scope. Parameters in a Param() block are one way to do that, and there are
many other ways to put values and objects into a variable.

17.8 Lab
The following command is for you to add to a script. You should first identify any ele-
ments that should be parameterized, such as the computer name. Your final script
should define the parameter, and you should create comment-based help within the
script. Run your script to test it, and use the Help command to make sure your com-
ment-based help works properly. Don’t forget to read the help files referenced within
this chapter for more information.

 Here’s the command:

Get-WmiObject -class Win32_OperatingSystem `
 -computername 'localhost' |
 Where-Object { $_.BuildNumber -ge 7600 } |
 Format-Table __SERVER,Caption,BuildNumber,ServicePackMajorVersion,
 @{l='BIOSSerial';e={
 Get-WmiObject -class Win32_BIOS -computername $_.__SERVER |
 Select-Object -expand SerialNumber
 }}

17.9 Ideas for on your own
Go back through some of the previous chapters and find some commands that you
think you might want to run more than once. Chapter 7, which included some exam-
ples of Active Directory commands, might be a good choice. Once you’ve found a
command or two, try making them into a parameterized script, and test your script to
see if it works. Add comment-based help to explain how the script works, and try view-

ing the help by using the standard Help command.

Download from Wow! eBook <www.wowebook.com>

Sessions: remote control,
with less work
Back in chapter 10, I introduced you to PowerShell’s remoting features. In that chap-
ter, you used two primary cmdlets—Invoke-Command and Enter-PSSession—to
access both one-to-many and one-to-one remote control. Each of those cmdlets
worked by creating a new remoting connection, doing whatever work you specified,
and then closing that connection. There’s nothing wrong with that approach, but it
can be tiring to have to continually specify computer names, credentials, alternative
port numbers, and so on. In this chapter, we’ll look at an easier, more reusable way
of tackling remoting. You’ll also learn about a third way of using remoting that will
really come in handy.

18.1 Making PowerShell remoting a bit easier
Anytime you need to connect to a remote computer, using either Invoke-Command
or Enter-PSSession, you have to at the very least specify the computer’s name (or
names, if you’re invoking a command on multiple computers). Depending on your
environment, you may also have to specify alternative credentials, which means
being prompted for a password. You might also need to specify alternative ports or
authentication mechanisms, depending upon how remoting is configured in your
organization.

 None of that is difficult to specify, but it can be tedious to have to do so again
and again and again. Fortunately, there’s a better way: reusable sessions.

18.2 Creating and using reusable sessions
A session is a persistent connection between your copy of PowerShell and a remote
203

copy of PowerShell. While the session is active, both your computer and the remote

Download from Wow! eBook <www.wowebook.com>

204 CHAPTER 18 Sessions: remote control, with less work

machine devote a small amount of memory and processor time toward maintaining
the connection, although there’s very little network traffic involved in the connection.
PowerShell maintains a list of all the sessions that you’ve opened, and you can utilize
those sessions to invoke commands or to enter a remote shell.

 To create a new session, use the New-PSSession cmdlet. Specify the computer
name (or names), and, if necessary, specify an alternative username, port, authentica-
tion mechanism, and so forth. The result will be a session object, which is stored in
PowerShell’s memory.

PS C:\> new-pssession -computername server-r2,server17,dc5

To retrieve those sessions, run Get-PSSession:

PS C:\> get-pssession

That works, but I prefer to create the sessions and then immediately store them in a
variable. For example, I have three IIS-based web servers that I routinely reconfigure
by using Invoke-Command. To make that easier, I’ll store those sessions in a specific
variable:

PS C:\> $iis_servers = new-pssession -comp web1,web2,web3

➥ -credential WebAdmin

Never forget that those sessions consume resources. If you close the shell, they’ll close
automatically, but if you’re not actively using them, it’s a good idea to manually close
them even if you’re planning to continue using the shell for other tasks.

 To close a session, use the Remove-PSSession cmdlet. For example, to close just
the IIS sessions, use this command:

PS C:\> $iis_servers | remove-pssession

Or, if you want to close all open sessions, use this command:

PS C:\> get-pssession | remove-pssession

Easy enough.
 Once you get some sessions up and running, what will you do with them? For the

next couple of sections, I’ll assume that you have created a variable named $sessions
that contains at least two sessions. I’ll use localhost and SERVER-R2; you should specify
your own computer names. Using localhost isn’t cheating: PowerShell actually starts
up a real remoting session with another copy of itself. Keep in mind that this will only
work if you’ve enabled remoting on all computers that you’re connecting to, so revisit
chapter 10 if you haven’t done so.

TRY IT NOW Start following along and running these commands, being sure
to use valid computer names. If you only have one computer, use both its
name and localhost.

 Here’s how I’ll get my sessions up and running:
PS C:\> $sessions = New-PSSession -comp SERVER-R2,localhost

Download from Wow! eBook <www.wowebook.com>

205Using sessions with Enter-PSSession

Bear in mind that I’ve already enabled remoting on these computers and that they’re
all in the same domain. Revisit chapter 10 if you’d like a refresher on enabling remoting.

18.3 Using sessions with Enter-PSSession
As you hopefully recall from chapter 10, Enter-PSSession is the cmdlet you use to
engage a one-to-one remote interactive shell with a single remote computer. Rather
than specifying a computer name with the cmdlet, you can specify a single session
object. Because my $sessions variable has two session objects, I must specify one of
them using an index (which you first learned to do in chapter 15):

PS C:\> enter-pssession -session $sessions[0]
[server-r2]: PS C:\Users\Administrator\Documents>

You can see that my prompt changed to indicate that I’m now controlling a remote
computer. Exit-PSSession will return me back to my local prompt, but the session
will remain open for additional use:

[server-r2]: PS C:\Users\Administrator\Documents> exit-pssession
PS C:\>

You might have a tough time remembering which index number goes with which
computer. In that case, you can take advantage of the properties of a session object.
For example, when I pipe my sessions to Gm, I get this output:

PS C:\> $sessions | gm

 TypeName: System.Management.Automation.Runspaces.PSSession

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
ApplicationPrivateData Property System.Management.Automation.PSPr...
Availability Property System.Management.Automation.Runs...
ComputerName Property System.String ComputerName {get;}
ConfigurationName Property System.String ConfigurationName {...
Id Property System.Int32 Id {get;}
InstanceId Property System.Guid InstanceId {get;}
Name Property System.String Name {get;set;}
Runspace Property System.Management.Automation.Runs...
State ScriptProperty System.Object State {get=$this.Ru...

I can see that the session object has a ComputerName property, so I could filter for that
session:

PS C:\> enter-pssession -session ($sessions |

➥ where { $_.computername -eq 'server-r2' })
[server-r2]: PS C:\Users\Administrator\Documents>
Download from Wow! eBook <www.wowebook.com>

206 CHAPTER 18 Sessions: remote control, with less work

That’s pretty awkward syntax, though. If you need to use a single session from a vari-
able, and you can’t remember which index number is which, it might be easier to for-
get about using the variable.

 Even though you stored your session objects in the variable, they’re still also stored
in PowerShell’s master list of open sessions. That means you can access them by using
Get-PSSession:

PS C:\> enter-pssession -session (get-pssession -computer server-r2)

That will retrieve the session having the computer name SERVER-R2 and pass it to the
-session parameter of Enter-PSSession.

 When I first figured out that technique, I was impressed with myself, but it also led
me to read a bit deeper. I pulled up the full help for Enter-PSSession and looked
more closely at the -session parameter. Here’s what I saw:

-Session <PSSession>
 Specifies a Windows PowerShell session (PSSession) to use for the
 interactive session. This parameter takes a session object. You ca
 n also use the Name, InstanceID, or ID parameters to specify a PSS
 ession.

 Enter a variable that contains a session object or a command that
 creates or gets a session object, such as a New-PSSession or Get-P
 SSession command. You can also pipe a session object to Enter-PSSe
 ssion. You can submit only one PSSession with this parameter. If y
 ou enter a variable that contains more than one PSSession, the com
 mand fails.

 When you use Exit-PSSession or the EXIT keyword, the interactive s
 ession ends, but the PSSession that you created remains open and a
 vailable for use.

 Required? false
 Position? 1
 Default value
 Accept pipeline input? true (ByValue, ByPropertyName)
 Accept wildcard characters? True

If you think back to chapter 7, that pipeline input information near the end is inter-
esting. It tells me that the -session parameter can accept, from the pipeline, a
PSSession object. I know that Get-PSSession produces PSSession objects, so this syn-
tax should also work:

PS C:\> Get-PSSession -ComputerName SERVER-R2 | Enter-PSSession
[server-r2]: PS C:\Users\Administrator\Documents>

And it does work! I think that’s a much more elegant way to retrieve a single session,
even if you’ve stored all your sessions in a variable.
Download from Wow! eBook <www.wowebook.com>

207Using sessions with Invoke-Command

18.4 Using sessions with Invoke-Command
Sessions really show their usefulness with Invoke-Command, which you’ll remember is
used to send a command (or an entire script) to multiple remote computers in parallel.
With my sessions in a $sessions variable, I can easily target them all with a command:

PS C:\> invoke-command -command { get-wmiobject -class win32_process }

➥ -session $sessions

Notice that I’m sending a Get-WmiObject command to the remote computers. I could
have chosen to use Get-WmiObject’s own -computername parameter, but I didn’t do so
for four reasons:

■ Remoting works over a single, predefined port; WMI doesn’t. Remoting is there-
fore easier to use with computers that are firewalled, because it’s easier to make
the necessary firewall exceptions. Microsoft’s Windows Firewall provides a spe-
cific exception for WMI that includes the stateful inspection necessary to make
WMI’s random port selection (called endpoint mapping) work properly, but it can
be difficult to manage with some third-party firewall products. With remoting,
it’s an easy, single port.

■ Pulling all of the processes can be labor-intensive, so this way each computer is
doing its own share of the work and just sending me the results.

■ Remoting operates in parallel, contacting up to 32 computers at once by
default. WMI only works sequentially with one computer at a time.

■ I can’t use my predefined sessions with Get-WmiObject, but I can use them with
Invoke-Command.

The -session parameter of Invoke-Command can also be fed with a parenthetical com-
mand, much as I’ve done with computer names in previous chapters. For example,
this sends a command to every session connected to a computer whose name starts
with “loc”:

PS C:\> invoke-command -command { get-wmiobject -class win32_process }

➥ -session (get-pssession -comp loc*)

You might expect that Invoke-Command would be able to receive session objects from
the pipeline, just as Enter-PSSession can. But a glance at the full help for Invoke-
Command shows that it can’t do that particular pipeline trick:

-Session <PSSession[]>
 Runs the command in the specified Windows PowerShell sessions (PSS
 essions). Enter a variable that contains the PSSessions or a comma
 nd that creates or gets the PSSessions, such as a New-PSSession or
 Get-PSSession command.

 When you create a PSSession, Windows PowerShell establishes a pers
 istent connection to the remote computer. Use a PSSession to run a
 series of related commands that share data. To run a single comma
 nd or a series of unrelated commands, use the ComputerName paramet

 er.

Download from Wow! eBook <www.wowebook.com>

208 CHAPTER 18 Sessions: remote control, with less work

 To create a PSSession, use the New-PSSession cmdlet. For more info
 rmation, see about_PSSessions.

 Required? false
 Position? 1
 Default value
 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? False

Here, the -session parameter can only accept pipeline input ByPropertyName,
which means I would need to pipe in an object that contained a session object inside a
property named Session—I can’t just pipe in session objects as I did with Enter-
PSSession. Too bad, but the preceding example of using a parenthetical expression
provides the same functionality without too difficult a syntax.

18.5 Implicit remoting: importing a session
Implicit remoting, for me, is one of the coolest and most useful—possibly the coolest
and the most useful—feature a command-line interface has ever had, on any operating
system, ever. And unfortunately, it’s barely documented in PowerShell! Sure, the com-
mands necessary are well documented, but how they come together to form this
incredible capability isn’t mentioned. Fortunately, I have you covered on this one.

 Here’s the scenario: We already know that Microsoft is shipping more and more
modules and snap-ins with Windows and other products. Sometimes, those modules
and snap-ins can’t be installed on your local computer for one reason or another. The
ActiveDirectory module, which shipped for the first time with Windows Server 2008
R2, is a perfect example: it only exists on Windows Server 2008 R2 and on Windows 7
machines that have the Remote Server Administration Tools (RSAT) installed. What if
your computer is running Windows XP or Windows Vista? Are you out of luck? No!
You can use implicit remoting!

 Here’s the entire process, laid out for you in a single example:

PS C:\> $session = new-pssession -comp server-r2
PS C:\> invoke-command -command

➥ { import-module activedirectory }
➥ -session $session
PS C:\> import-pssession -session $session

➥ -module activedirectory
➥ -prefix rem

ModuleType Name ExportedCommands
---------- ---- ----------------
Script tmp_2b9451dc-b973-495d... {Set-ADOrganizationalUnit, Get-ADD...

Here’s what I do:

1 I start by establishing a session with a remote computer that has the Active-
Directory module installed B. That computer needs to be running PowerShell
v2 (which Windows Server 2008 R2 does), and it must have remoting enabled.

Establishes
connectionb

Load remote
modulec

Import remote
commandsd Reviews temporary

local module
e

Download from Wow! eBook <www.wowebook.com>

209Lab

2 I tell the remote computer to import its local ActiveDirectory module c. You
could load any module, or even add a PSSnapin. Because the session is still
open, the module stays loaded on the remote computer.

3 I then tell my computer to import the commands from that remote session d. I
only want the commands in the ActiveDirectory module, and when they’re
imported I want a “rem” prefix added to each command’s noun. That way I can
keep track of the remote commands more easily.

4 PowerShell creates a temporary module on my computer that represents the
remote commands e. The commands aren’t actually copied over; instead,
PowerShell creates shortcuts for them, and those shortcuts point to the remote
machine.

Now I can run the ActiveDirectory module commands, or even ask for help. Instead of
running New-ADUser, I’d run New-remADUser, because I added that “rem” prefix to the
commands’ nouns. The commands will remain available until I either close the shell
or close that session with the remote computer. When I open a new shell, I’ll have to
repeat this process to regain access to the remote commands.

 When I run these commands, they don’t execute on my local machine. Instead,
they’re implicitly remoted to the remote computer. It executes them for me and sends
the results to my computer.

 I can envision a world where we don’t ever install administrative tools on our com-
puters again. What a hassle we’d avoid! Today, you have to get tools that can run on
your computer’s operating system and talk to whatever remote server you’re trying to
manage—getting everything to match up can be impossible. In the future, you won’t
do that. You’ll use implicit remoting. Servers will offer their management features as
another service, via Windows PowerShell.

 Now for the bad news: the results brought to your computer through implicit
remoting are all deserialized, meaning that the objects’ properties are copied into an
XML file for transmission across the network. The objects you receive this way don’t
have any methods. In most cases, that’s not a problem, but some modules and snap-ins
produce objects that are meant to be used in a more programming-centric style, and
those don’t lend themselves to implicit remoting. Hopefully, you’ll encounter few (if
any) objects with this limitation, as a reliance on methods violates some PowerShell
design practices. If you do run into such objects, you won’t be able to utilize them
through implicit remoting.

18.6 Lab
To complete this lab, you’re going to want to have two computers: one to remote
from, and another to remote to. If you only have one computer, use its computer
name to remote to it. The remote computer should be running Windows Server 2008

R2. You should get the same essential experience that way.

Download from Wow! eBook <www.wowebook.com>

210 CHAPTER 18 Sessions: remote control, with less work

1 Close all open sessions in your shell.
2 Establish a session to the remote computer. Save the session in a variable named

$session.
3 Use the $session variable to establish a one-to-one remote shell session with

the remote computer. Display a list of processes, and then exit.
4 Use the $session variable with Invoke-Command to get a list of services from the

remote computer.
5 Use Get-PSSession and Invoke-Command to get a list of the 20 most recent

Security event log entries from the remote computer.
6 Use Invoke-Command and your $session variable to load the ServerManager

module on the remote computer.
7 Import the ServerManager module’s commands from the remote computer to

your computer. Add the prefix “rem” to the imported commands’ nouns.
8 Run the imported Get-WindowsFeature command.
9 Close the session that’s in your $session variable.

18.7 Ideas for on your own
Take a quick inventory of your environment: what PowerShell-enabled products do
you have? Exchange Server? SharePoint Server? VMWare vSphere? System Center Vir-
tual Machine Manager? These and other products all include PowerShell modules or
snap-ins, many of which are accessible via PowerShell remoting.
Download from Wow! eBook <www.wowebook.com>

From command to
script to function
Let’s say that you’ve come up with a great command that you not only want to use
again and again, but you want to share with your colleagues and co-workers. It’s a
somewhat complicated command, so you want to put it into a batch file for them.
There are also one or two things that need to change each time you run the com-
mand, such as a computer name or other parameter, so you want to make it easy for
them to provide that information. PowerShell makes it easy to do all of that, and
you’re going to see how in this chapter.

19.1 Turning a command into a reusable tool
If I’ve said it once, I’ve said it a million times: you don’t need to be a programmer
to do amazing things with PowerShell. Given a command that does what you want,
you just need to add a little bit of structure—not really programming or scripting
code—to modularize it and to start making a reusable tool out of it.

 Let’s start with two commands. We’ll get a computer’s name, operating system
build number, service pack version, and C: drive free space in megabytes (MB). We
can do that right from the shell by using these two commands:

Get-WmiObject Win32_OperatingSystem -computer SERVER-R2 |
 Select @{l='ComputerName';e={$_.__SERVER}},
 BuildNumber,ServicePackMajorVersion

Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" -comp SERVER-R2 |
 Select @{l='SysDriveFree(MB)';e={$_.FreeSpace / 1MB -as [int]}}
211

Download from Wow! eBook <www.wowebook.com>

212 CHAPTER 19 From command to script to function

One problem is that these two commands create two completely independent sets of
output—try running each of them and you’ll see what I mean.

TRY IT NOW Go ahead and try running both commands, but be sure to use a
working computer name (or localhost) rather than SERVER-R2. Also try enter-
ing both commands into a single script file, using the Windows PowerShell ISE,
and running the script. Notice the difference in the output you get between
running the commands from the console and running them both in a script.

Another problem is that the computer name is hardcoded into the commands. We
want to provide an easy way to substitute a different computer name each time the
commands are run.

 So at this point we have two problems:

■ We want the output combined into a single four-column table.
■ We want to be able to easily provide a different computer name, or perhaps

multiple computer names, each time the commands are run.

19.2 Modularizing: one task, one function
First, I recommend that you try to identify the main tasks that your tool or commands
need to perform. Looking at the two commands from the preceding section, I can
immediately identify three distinct tasks:

■ We need to get a computer name, or several computer names, from someplace.
■ We have to retrieve the Win32_OperatingSystem WMI class.
■ We have to retrieve the Win32_LogicalDisk WMI class.

You have to be a bit careful about breaking a command into too many tasks, though. A
good way to avoid overdoing it is to think about your output. We want a single, com-
bined table containing the operating system information and the disk information.
That means those two commands are really part of the same task, because we only
want a single piece of output. So that narrows it down to two tasks: retrieving the WMI
information, and getting computer names from somewhere.

 It’s important that we keep those two tasks separate. We need to build two units of
work: one unit of work is going to handle the WMI queries and create the output; the
other unit of work will provide computer names. In fact, computer names might be
provided by whoever is using this command.

 Let’s stop worrying about the computer names for now, and focus on the other
unit of work, which is where the actual functionality is happening. We need to solve
the problem of getting all of the output into a single table. One way to do that is to
construct our own output table. Listing 19.1 shows that approach, and the output
looks like this:

ComputerName BuildNumber SPVersion FreeSpace
============ =========== ========= =========

SERVER-R2 7600 0 50077

Download from Wow! eBook <www.wowebook.com>

213Simple and parameterized functions

$computername = 'SERVER-R2'

$os = Get-WmiObject Win32_OperatingSystem -computer $computername |
 Select @{l='ComputerName';e={$_.__SERVER}},
 BuildNumber,ServicePackMajorVersion

$disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername |
 Select @{l='SysDriveFree';e={$_.FreeSpace / 1MB -as [int]}}

Write-Host "Computer`tBuildNumber`tSPVersion`tFreeSpace"
Write-Host "========`t===========`t=========`t========="
Write-Host ("{0}`t{1}`t{2}`t{3}" -f ($os.ComputerName),
 ($os.BuildNumber),($os.servicepackmajorversion),
 ($disk.sysdrivefree))

Okay, that output is pretty awful—the columns aren’t lining up. But the information
we want is there, so let’s tackle the formatting later.

 In listing 19.1, you can see that I’ve put the computer name into a variable of its
own B. That separates the computer name from the rest of the task. I’m also using
Write-Host to create a table header c, and then using the -f operator to format a
table row d. The string that precedes the -f operator has placeholders like {0} and
{1}, as well as tab characters (`t). The comma-separated list after the -f operator pro-
vides the values for each of the four placeholders. This will be our starting point.

19.3 Simple and parameterized functions
We want to modularize our code into a function, which is a self-contained, standalone
unit of work that we can distribute more easily. An easy way to make a function is to
wrap it in a function declaration, as shown here.

function Get-ServerInfo {
 $computername = 'SERVER-R2'

 $os = Get-WmiObject Win32_OperatingSystem -computer $computername |
 Select @{l='ComputerName';e={$_.__SERVER}},
 BuildNumber,ServicePackMajorVersion

 $disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername |
 Select @{l='SysDriveFree';e={$_.FreeSpace / 1MB -as [int]}}

 Write-Host "ComputerName`tBuildNumber`tSPVersion`tFreeSpace"
 Write-Host "============`t===========`t=========`t========="
 Write-Host ("{0}`t{1}`t{2}`t{3}" -f ($os.ComputerName),
 ($os.BuildNumber),($os.servicepackmajorversion),
 ($disk.sysdrivefree))

Listing 19.1 Trying to get all the output into a single table

Listing 19.2 Wrapping the code in a function

Put computer name in a variableb

Output table
header

c

Use -f operator to
make a table row

d

}

Download from Wow! eBook <www.wowebook.com>

214 CHAPTER 19 From command to script to function

TRY IT NOW You should be able to enter this function into a blank script
within the PowerShell ISE. To run the function, just add Get-ServerInfo as
the last line in the script, underneath the function, and then run the script
using the Run toolbar icon (or by pressing F5). That’s the same pattern you’ll
use throughout this chapter: define the function first, and then call the func-
tion at the end of the script file.

I’ve selected a function name that looks like a cmdlet name, using the verb-noun nam-
ing convention of a cmdlet. Apart from that, I didn’t change anything.

 We need to change something, though, because we don’t want the computer name
to always be SERVER-R2. The solution is to change $computername from a variable into
a parameter, which we can do by adding it to a Param() block at the top of the func-
tion. The next listing shows this new version of the function.

function Get-ServerInfo {
 param (
 $computername = 'localhost'
)

 $os = Get-WmiObject Win32_OperatingSystem -computer $computername |
 Select @{l='ComputerName';e={$_.__SERVER}},
 BuildNumber,ServicePackMajorVersion

 $disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername |
 Select @{l='SysDriveFree';e={$_.FreeSpace / 1MB -as [int]}}

 Write-Host "ComputerName`tBuildNumber`tSPVersion`tFreeSpace"
 Write-Host "============`t===========`t=========`t========="
 Write-Host ("{0}`t{1}`t{2}`t{3}" -f ($os.ComputerName),
 ($os.BuildNumber),($os.servicepackmajorversion),
 ($disk.sysdrivefree))
}

You’ll notice that I set $computername equal to localhost. That will now serve as a
default value. If someone runs this function without specifying a computer name, the
function will target localhost, which is usually a safe operation.

 The function can be given an alternative computer name in any of these ways:

Get-ServerInfo -computername SERVER-R2
Get-ServerInfo -comp SERVER27
Get-ServerInfo WESTDC4

TRY IT NOW To try any of these examples, add the command to the end of the
script file that contains the function. I suggest continuing to work in the
PowerShell ISE so that you can follow this pattern throughout the chapter.

In these examples, I used the full parameter name, an abbreviated parameter name,

Listing 19.3 Parameterizing the function

Variable changed
to parameter
and a positional parameter. All parameters in a Param() block are positional by default,

Download from Wow! eBook <www.wowebook.com>

215Returning a value from a function

meaning that you can pass in values in the order in which the parameters are declared,
without specifying the parameter names.

 By the way, if you wanted to have a second parameter, you would just separate it
from the first one with a comma. There’s also a neat trick that allows the default value
to prompt the user. That way, if someone runs the function and doesn’t specify the
parameter, they’re prompted for it. That would look something like this:

Function Test-This {
 Param(
 $computername = (Read-Host "Enter computer name"),
 $logerrors = $True,
 $logfile
)
}

With the parameter in place, we’ve completely separated our main functionality from
the task of getting computer names.

19.4 Returning a value from a function
Now we need to work on the output of our function a bit, because right now it’s
pretty ugly.

 First, though, I want to briefly ignore the function we’ve been working on and
show you one way to output a single value from a function. This is useful in cases
where you only need a single value. Here’s how you would write the function:

function Get-SPVersion {
 param ($computername)
 $os = Get-WmiObject Win32_OperatingSystem -comp $computername
 return ($os.servicepackmajorversion)
}

You would run the function, and see the result, as follows:

PS C:\> Get-SPVersion server-r2
0

You could also capture the function’s output into a variable:

PS C:\> $version = Get-SPVersion server-r2
PS C:\> $version
0

The return keyword places a single object (such as an integer, in this example) into
the pipeline, and then immediately exits the function. Any code following the return
keyword won’t ever execute.

 Our function, however, needs to return more than a single value. It is actually out-
putting four pieces of information, and we want that information in a table. That
means the return keyword isn’t suitable. Instead, we could continue using Write-
Host, but it doesn’t place anything into the pipeline. That means our function could
never pipe its output to another cmdlet like this:
PS C:\> Get-ServerInfo | Export-CSV info.csv

Download from Wow! eBook <www.wowebook.com>

216 CHAPTER 19 From command to script to function

In order to pipe our output to another cmdlet, we have to place our output into the
pipeline, rather than writing it directly to the screen. As you learned in chapter 16,
Write-Output is the way to do that. This listing shows that modification.

function Get-ServerInfo {
 param (
 $computername = 'localhost'
)

 $os = Get-WmiObject Win32_OperatingSystem -computer $computername |
 Select @{l='ComputerName';e={$_.__SERVER}},
 BuildNumber,ServicePackMajorVersion

 $disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername |
 Select @{l='SysDriveFree';e={$_.FreeSpace / 1MB -as [int]}}

 Write-Output "ComputerName`tBuildNumber`tSPVersion`tFreeSpace"
 Write-Output "============`t===========`t=========`t========="
 Write-Output ("{0}`t{1}`t{2}`t{3}" -f ($os.ComputerName),
 ($os.BuildNumber),($os.servicepackmajorversion),
 ($disk.sysdrivefree))
}

All I’ve done is swap out Write-Output for Write-Host. Running this function, I get
the same output that we did before, which I’m still not happy with. It looks like this:

Get-ServerInfo
ComputerName Build Number SPVersion FreeSpace
============ ===== ====== ========= =========
SERVER-R2 7600 0 50077

But let’s try piping the output to a CSV file. Run Get-ServerInfo | Export-CSV

info.csv, and then open the CSV file in Notepad. This is what I see:

#TYPE System.String
"Length"
"44"
"44"
"22"

Not what I wanted at all. This isn’t going well. I think we need to consider an entirely
different way of producing our output.

19.5 Returning objects from a function
Here’s a little-known secret about PowerShell: it doesn’t really like text—it likes objects.
What we’ve been doing so far in our function is attempting to format our output as a
text table, all on our own. By doing so, we’re working against PowerShell’s native capa-
bilities, which are making it harder to get the output we want. We need to stop fighting

Listing 19.4 Using Write-Output to write to the pipeline
Download from Wow! eBook <www.wowebook.com>

217Returning objects from a function

the shell and instead work with it. That means we need to stop trying to output text, and
instead output objects.

 Because we have information from two places—Win32_OperatingSystem and
Win32_LogicalDisk—we can’t directly output either of the objects we got back from
WMI. Instead, we need to create a brand-new, blank object that we can use to combine
our four pieces of information. PowerShell provides a blank object type called a
PSObject for exactly this purpose. We simply need to create one of these, and then
add our information to it in the form of properties. Specifically, we’ll add our infor-
mation in the form of a NoteProperty, which is a static piece of information.

 I’m going to make several changes to our function, as shown in listing 19.5. The
good news is that the output is exactly what we want:

ComputerName BuildNumber SPVersion SysDriveFree
------------ ----------- --------- ------------
localhost 7600 0 0

function Get-ServerInfo {
 param (
 $computername = 'localhost'
)

 $os = Get-WmiObject `

 ➥ Win32_OperatingSystem -computer $computername

 $disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername

 $obj = New-Object -TypeName PSObject

 $obj | Add-Member -MemberType NoteProperty `
 -Name ComputerName -Value $computername

 $obj | Add-Member -MemberType NoteProperty `
 -Name BuildNumber -Value ($os.BuildNumber)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SPVersion -Value ($os.ServicePackMajorVersion)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SysDriveFree -Value ($disk.free / 1MB -as [int])

 Write-Output $obj
}

Get-ServerInfo | Format-Table -auto

In this listing, I’ve started by simplifying the WMI queries B. There’s no need to cre-
ate those custom columns by using Select-Object. We’re going to be creating and
outputting a whole new object, so we can do those customizations right on that new

Listing 19.5 Outputting objects instead of text

Use simplified
WMI query

b

Create
PSObjectc

Add properties
to objectd

Write object
to pipeline

e

Call functionf
Download from Wow! eBook <www.wowebook.com>

218 CHAPTER 19 From command to script to function

object. After querying the information, I create the new PSObject and put it in a
variable, $obj c. To add information to that object, I pipe the object to Add-Member
four times d. Each time, I specify that I’m adding a NoteProperty, give a property
name, and provide the value for that property. Note that PowerShell isn’t usually case-
sensitive, but it will preserve whatever case I use, so I’ve taken care to make sure that
the property names are typed with capital letters so that they look nice in the final out-
put. After adding all four properties, I write the final object to the pipeline e. This
listing also shows the command I used to call the function f. You can see that I’ve
piped it to Format-Table to ensure I get the output format that I want.

 This new function is infinitely flexible, because it outputs objects instead of text.
For example, all of these examples are legitimate ways of using the function:

Get-ServerInfo | Format-Table -auto
Get-ServerInfo -comp Server-R2 | Export-CSV info.csv
Get-ServerInfo -comp localhost | ConvertTo-HTML | Out-File info.html

TRY IT NOW You can add all three of these commands to the end of listing 19.5,
and then run the complete script to see the results yourself. Be sure to exam-
ine the resulting CSV and HTML files.

That last command is my attempt at creating a CSV file again. This time, the results in
the CSV file are much better:

#TYPE System.Management.Automation.PSCustomObject
"ComputerName","BuildNumber","SPVersion","SysDriveFree"
"Server-R2","7600","0","0"

We’re definitely on the right path, and here are the two keys to staying there:

■ Break tasks down—We separated how we get the computer name from the actual
working code. All of the working code went into a single function, because we
want a single unified piece of output.

■ Output objects—Always have functions return either a single value (using the
return keyword), or output objects. By outputting objects, you can pipe the func-
tion’s output to many other cmdlets to format, convert, filter, sort, and so forth.

You’re going to use this object-output technique many more times in the following
chapters, so be sure you’ve taken the time to enter and run these examples, and that
you understand what they’re doing.

19.6 Lab
Create a function of your own that combines information from Win32_Operating-
System, Win32_BIOS, and Win32_ComputerSystem. Your function’s output should
include the following:

■ The operating system version name (such as “Windows Server 2008 R2”)

■ The domain that the computer belongs to

Download from Wow! eBook <www.wowebook.com>

219Ideas for on your own

■ The computer’s DNS host name
■ The BIOS serial number

Make sure that your function can pipe its output to other cmdlets, such as Format-
List, Format-Table, Export-CSV, and ConvertTo-HTML.

19.7 Ideas for on your own
Spend some time thinking about what other pieces of information you would like to
combine into a single piece of output. Operating system version and BIOS serial num-
ber? Computer system details and network adapter configuration settings? By creating
and outputting your own custom objects, you can combine as much information as
you want into a single entity.
Download from Wow! eBook <www.wowebook.com>

Adding logic and loops
Up to this point, I don’t consider anything that we’ve done so far to be “scripting.”
It depends on your definition of the word, of course, but to me scripting is a kind of
programming, with formal constructs that define logic, repetition, and so forth.
You can do a lot in PowerShell without that stuff. But the time will come when you
will need to write a script that can make logical decisions, and you’ll start to move
beyond running commands and moving into simple scripts.

 The goal in this chapter is to let you experience some of PowerShell’s major
scripting constructs for logic and repetition, so that you’ll be prepared to use these
elements when the time comes.

20.1 Automating complex, multi-step processes
I typically find a need for these constructs when I’m automating more complex,
multistep processes. For example, consider a script that provisions a new user: you
need to create an Active Directory account, add the user to some groups, create a
mailbox, create a home directory on a file server, and so on. Those processes often
involve questions, with branching logic: Should the user belong to such-and-such a
domain user group? Should they have access to certain files? Each question leads to
a slightly different course of action. In some cases, certain operations may have to
be done over and over, such as adding a user to several groups, or perhaps granting
them permissions over several folders or files.

20.2 Now we’re “scripting”
I admit that we’ve been creeping toward actual scripting for a while now. The previ-
220

ous chapter, for example, introduced some structures that would normally only live

Download from Wow! eBook <www.wowebook.com>

221The If construct

within a .PS1 script file, and that you’d probably never type directly on the command
line. But I mostly think of things like Param() blocks as window dressing. They don’t
do anything, but they do provide some structure and definition to our commands.

 Once we start adding logic and repetition, I’ll admit that we’ve formally moved
into the world of scripting. That’s not a bad thing: this isn’t going to be the type of
programming you’d do in Visual Studio (although PowerShell can certainly accom-
modate pretty intense, complex scripts). We’re going to keep it simple, using these
scripting constructs primarily to add a little intelligence to a batch of commands.

20.3 The If construct
First up is the scripting construct that you’ll probably use the most: If. A basic If con-
struct looks like this:

If ($process.pm -gt 10000) {
 Write-Host "This is a large process"
}

There are just a couple of important things to note:

■ As with most of PowerShell, the If keyword isn’t case-sensitive. You can use if
or IF or even iF.

■ The parentheses contain an expression of some kind. This has to evaluate to
either True or False (or, to use the PowerShell values, $True or $False).

■ After the parentheses, you open the construct by using a curly brace. You com-
plete the construct with a closing brace.

■ Most people indent the commands within the construct, so that it’s easier to
visually distinguish the commands that are inside the construct.

Here’s another way to format this:

If ($process.pm -gt 10000)
{
 Write-Host "This is a large process"

Above and beyond

This chapter will introduce you to all but one of PowerShell’s formal scripting con-
structs. The missing construct is the Do loop, which also uses the keywords While
and Until in certain scenarios. You can learn more about them in PowerShell’s help:
run help about* to get a list of help topics, and look for Do, While, and Until.

Why aren’t they covered in this chapter? Simple: for most administrative scripts, you
won’t need them. As you start to progress into more advanced scripts, you can famil-
iarize yourself with them on your own, and use them if necessary. They’re generally
used to repeat some set of commands over and over until a certain condition is either
true or false.
}

Download from Wow! eBook <www.wowebook.com>

222 CHAPTER 20 Adding logic and loops

The only difference is where I put the opening curly brace. PowerShell doesn’t care,
but this method does make it a bit easier to quickly distinguish the commands inside
the construct, and to make sure that you’ve properly closed the construct. I tend to
use the first formatting style because it takes up less room on-screen in a class, and it
takes up fewer lines in a book like this.

 I find that administrators who are neat and consistent about formatting their con-
structs typically have to spend less time debugging their scripts, so there’s another
benefit of properly indenting the commands and so forth.

 Sometimes, you may need to check multiple potential conditions. An ElseIf
allows you to do so:

If ($service.name -eq 'BITS') {
 Write-Host 'This is the transfer service'
} elseif ($service.name -eq 'Spooler') {
 Write-Host 'This is the print spooler'
} elseif ($service.name -eq 'W32Time') {
 Write-Host 'This is the time service'
}

You can have as many ElseIf sections as you want, and each one gets its own condi-
tional expression in parentheses. PowerShell will review these in order, and it will exe-
cute only the first one whose expression evaluates to True. Once it finds one, it won’t
evaluate or consider any of the remaining options.

 The last permutation of this construct is to add a kind of catch-all that will execute
if no preceding condition has been True:

If ($service.name -eq 'BITS') {
 Write-Host 'This is the transfer service'
} elseif ($service.name -eq 'Spooler') {
 Write-Host 'This is the print spooler'
} elseif ($service.name -eq 'W32Time') {
 Write-Host 'This is the time service'
} else {
 Write-Host 'This is an unknown service'
}

The Else block comes last, and it will execute only if none of the preceding If or
ElseIf expressions evaluated to True. You can use Else even if you aren’t using any
ElseIf blocks.

 The parenthetical expressions used with If and ElseIf will often contain a com-
parison operator, because comparisons are usually an easy way to get a True or False
result. But that isn’t always the case. If you have a property or variable that already
contains $True or $False, you don’t need a comparison at all. For example, consider
this snippet:

$processes = Get-Process
if ($processes[0].responding -eq $True) {
 Write-Host 'The first process is responding'

}

Download from Wow! eBook <www.wowebook.com>

223The Switch construct

The Responding property of a process always contains either $True or $False, so
there’s no need to actually compare it to $True or $False. You could rewrite this as
follows:

$processes = Get-Process
if ($processes[0].responding) {
 Write-Host 'The first process is responding'
}

This is a much more common way of handling the situation. Remember, all you care
about is that the interior of the parentheses boils down to $True or $False in some
fashion. In this case, because the Responding property already provides one of those
two values, you don’t need to do any more work.

 Here’s a quick tip: I learned about the Responding property by running Get-
Process | Gm. In the list, I saw Responding and wondered what kind of information it
contained. Would it be a 0 or 1? A Yes or No? Something else? So I ran Get-Process |
Format-List *, which displayed all of the processes’ properties and their values. That
output showed me that Responding contained True for almost all of my processes, so I
logically assumed that False was also a possibility. I encourage you to use this same
technique to discover what’s inside the properties of other objects you work with.

20.4 The Switch construct
The Switch construct acts as a specialized kind of logical comparison. You start with a
single variable or property, and you ask the shell to compare its contents to a wide
range of possible values. The shell will execute a block of commands for each match
that it finds.

 Here’s an example that translates a numeric printer status code into a human-
readable status message:

Switch ($printer.status) {
 1075 {
 Write-Host 'Printer jammed.'
 }
 1842 {
 Write-Host 'Toner needed.'
 }
 1167 {
 Write-Host 'Overheating.'
 }
 4422 {
 Write-Host 'Out of paper.'
 }
 'OK' {
 Write-Host 'Operating normally.'
 }
 Default {
 Write-Host 'Status unknown.'
 }

}

Download from Wow! eBook <www.wowebook.com>

224 CHAPTER 20 Adding logic and loops

The Default block will execute only if none of the prior blocks have executed. But, as
shown here, all possible matches will all execute. That’s different than the If con-
struct, which only executes the first condition that’s True.

 In this particular example, it’s probably impossible for the Status property to con-
tain both 1075 and OK, so we don’t need to worry about multiple matches occurring.
But here’s a variation of Switch:

Switch -wildcard ($computername) {
 '*DC*' {
 Write-Host 'Domain Controller'
 }
 '*WEST*' {
 Write-Host 'West Coast'
 }
 '*BK*' {
 Write-Host 'Backup'
 }
}

In this case, if $computername contains WESTDCBK, we’d get “Domain Controller,”
“West Coast,” and “Backup” as our output. That might be desirable, and in this partic-
ular scenario I think that’s what I’d want. In other situations, however, you might only
want the first matching condition to execute. In those cases, use the Break keyword
within one of the conditional blocks.

Break exits the entire construct immediately (it will exit anything except an If
construct), preventing further potential matches from being considered. Here’s an
example:

Switch -wildcard ($jobtitle) {
 '*Executive*' {
 Write-Host 'Is an executive'
 break
 }
 '*Jan*' {
 Write-Host 'In janitorial'
 break
 }
 '*Manager*' {
 Write-Host 'Is a manager'
 break
 }
}

If $jobtitle contains Janitorial Manager, our only output would be “In janitorial.”
 The Switch construct has a few other tricks it can perform, including evaluating

regular expressions (which aren’t covered in this book). For more information, run
help about_switch in the shell.
Download from Wow! eBook <www.wowebook.com>

225The ForEach construct

20.5 The For construct
The For construct is a loop that’s intended to repeat a given block of commands a spe-
cific number of times. Here’s an example—see if you can predict what its output
would be:

For ($i = 0; $i -lt 10; $i++) {
 Write-Host $i
}

This one can be hard to figure out if you’re not familiar with the C-style construction.
Here’s a cheat sheet:

■ The first element is a starting point, where I’m setting a counter variable to 0.
■ The second element is the condition that will keep the loop going. Here, so

long as $i is less than 10, the loop will repeat.
■ The last element is what to do after each time through the loop. Here, I’m

incrementing $i by 1. I could also have typed $i = $i + 1, which is a bit easier
to figure out, but it takes longer to type than $i++.

Can you figure out what the output would be, without actually running that snippet? It
would display 0 through 9, and then stop. Once $i is no longer less than 10, the loop
exits. $i will actually contain 10 after the completion of the loop, because it’s the fact
that $i contains 10 that made $i no longer less than 10, ending the loop.

20.6 The ForEach construct
ForEach can be one of the most useful constructs, but it’s also the one that I see mis-
used the most. For someone with a programming or VBScript background, ForEach
can be very familiar and compelling, but it isn’t always needed.

 Here’s what it looks like:

$services = Get-Service
ForEach ($service in $services) {
 Write-Host $service.Name
}

This script starts by getting a bunch of services, using Get-Service, and storing them
in the $services variable. In the ForEach construct, I’m asking it to enumerate (to go
through one at a time) all of the services. Each time the loop repeats, the next service
will be placed into the $service variable, which I made up for just that purpose. There’s
no need for me to do anything with $service ahead of time; by using it in this fashion,
I’ve told PowerShell all it needs to know about what I’m trying to do. The in keyword
is crucial: the variable before the in keyword will contain one object at a time; the variable
after the in keyword contains all of the objects I want to work with. Within the construct,
I use the one-at-a-time variable ($service, in this case) to write the services’ names.
Download from Wow! eBook <www.wowebook.com>

226 CHAPTER 20 Adding logic and loops

ForEach may seem familiar to you, because we’ve used the ForEach-Object cmdlet
(and perhaps you’ve used that cmdlet’s foreach alias) in previous chapters. The con-
struct works much the same as the cmdlet: both go through a collection of objects one
at a time. With the construct, you get to define the variable that contains one object at
a time (I used $service in the preceding example); with the cmdlet, PowerShell
forces you to use the $_ placeholder. For example, I could rewrite the previous exam-
ple like this:

Get-Service | ForEach-Object { Write-Host $_.Name }

When you use the construct, you use the in keyword, as I did in my ForEach example.
When you use the cmdlet, you don’t need to use the in keyword because PowerShell
automatically enumerates into the built-in $_ placeholder.

20.7 Why scripting isn’t always necessary
ForEach is an excellent example of why scripting like this isn’t always necessary in Pow-
erShell, even though PowerShell will let you do it. That previous example could have
been accomplished more easily in the pipeline:

Get-Service | Select Name

That will produce new objects that have only a Name property. If you wanted to get the
actual names as simple string values, you could do this:

Get-Service | Select -expand Name

Both of those options involve a lot less typing. The point here is that using ForEach is
often (but not always) an indicator that you’re taking a scripting approach rather than
a pure PowerShell approach. You won’t get in trouble for taking a scripting approach,
but it often requires a lot more typing—and a script—than using a couple of com-
mands. There are only two times when I find myself legitimately using ForEach:

■ When there’s no cmdlet capable of doing what I need to a bunch of objects at
once. This most often happens when I need to execute a method against a
bunch of objects, and there isn’t a cmdlet that can perform the equivalent task.

■ When I need to manually “unwind” a bunch of objects and send them off, one
at a time, to a custom function that I’ve written, which can only work with one
at a time. You’ll see an example of this in the next chapter.

If you have some scripting or programming in your background, and you want to try to
force yourself to take a more “pure PowerShell” approach, use ForEach as a cue. When
you find yourself using it, see if there isn’t an easier way. For example, instead of this,

$processes = Get-Process
ForEach ($process in $processes) {
 If ($process.name -eq 'notepad') {
 $process.kill()
 }

}

Download from Wow! eBook <www.wowebook.com>

227Lab

you could just do this,

Get-Process | Where-Object { $_.Name -eq 'notepad' } | Stop-Process

or better yet, this,

Get-Process -name notepad | Stop-Process

or best of all, this:

Stop-Process -name notepad

These all accomplish the same thing, but the command-oriented way takes a lot less
typing (and to me, is easier to read and figure out) than the scripting-oriented way.

20.8 Lab
For this lab, you’ll probably want to work within the PowerShell ISE. That will make it
easier to enter multiline scripts and commands, and it’ll make it easier to edit if you
make any mistakes or want to make a change.

1 Create a script that uses Read-Host to prompt for a remote computer name. If
the computer name is localhost, then don’t do anything. Otherwise, query the
Win32_OperatingSystem WMI class from the specified computer.

2 Create a script that queries the Win32_LogicalDisk WMI class from the local
computer. Use a ForEach loop to enumerate the instances returned by the
query. Within the ForEach loop, display the DeviceID property. Then display a
text description of the DriveType property by using a Switch construct. For
example, if the DriveType is 3, display “Fixed Disk.” Use a search engine to
search for “Win32_LogicalDisk,” and you’ll locate the documentation page for
that WMI class. The documentation page will display the possible values, and
meanings, of the DriveType property.
Download from Wow! eBook <www.wowebook.com>

Creating your own
“cmdlets” and modules
At the end of chapter 19, you saw how to make a function (in listing 19.5) that out-
put custom objects to the pipeline. Mastering that kind of output is a key to becom-
ing a PowerShell guru, but there’s also the question of input.

 In chapter 19, we passed input to the function by means of a parameter. In this
chapter, we’re going to look at some other means of getting input into the func-
tion. By combining different input techniques with what you already know about
producing output, you’ll find that you can create a tool that behaves almost exactly
like a PowerShell cmdlet!

21.1 Turning a reusable tool into a full-fledged cmdlet
As I said, the function in listing 19.5 accepted input primarily through a parameter.
In order to make a tool like that more useful, it would be nice if we could pass in
multiple pieces of input (the function in listing 19.5 only worked with a single com-
puter name, for example), and pass them in either using a parameter or from the
pipeline. That would give us a fully reusable tool that looks and works much like a
cmdlet. Ideally, we could even have the shell do some input validation for us, such
as marking a parameter as mandatory and automatically prompting the user if it
wasn’t provided.

 To get you to that point, I’m going to take a slightly roundabout path. There are
three broad kinds of functions you can write in the shell. Chapter 19 covered one of
them—a simple parameterized function (I guess a non-parameterized function could
be considered to be an even simpler, fourth type, but I don’t write many of those
228

myself). I’ll start by showing you a second type, which accepts pipeline input instead.

Download from Wow! eBook <www.wowebook.com>

229Functions that work in the pipeline

21.2 Functions that work in the pipeline
The next type of function I’ll introduce you to is called a pipeline function, or filtering
function. If a regular parameterized function is distinguished by its ability to accept
input only through parameters, then a filtering function has these distinguishing
characteristics:

■ You can accept one kind of information through the pipeline. This might be
computer names, processes, or any other single kind of information.

■ Whatever you accept through the pipeline can come as a single object, or multi-
ple objects can be piped in. You’ll write one (or many) commands that execute
against each piped-in object, no matter how many there are.

■ You can designate additional parameters for other input elements. The values
provided to these parameters will be used for each execution of your commands.

That’ll all probably make more sense with an example. We’ll start with the same func-
tion in listing 19.5, but I’ll dress it up slightly to make it a filtering function, shown
next.

function Get-ServerInfo {
 BEGIN {}
 PROCESS {
 $computername = $_

 $os = Get-WmiObject Win32_OperatingSystem -computer $computername

 $disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername

 $obj = New-Object -TypeName PSObject

 $obj | Add-Member -MemberType NoteProperty `
 -Name ComputerName -Value $computername

 $obj | Add-Member -MemberType NoteProperty `
 -Name BuildNumber -Value ($os.BuildNumber)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SPVersion -Value ($os.ServicePackMajorVersion)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SysDriveFree -Value ($disk.free / 1MB -as [int])

 Write-Output $obj
 }
 END {}
}

Get-Content names.txt | Get-ServerInfo | Format-Table -auto

Listing 21.1 A filtering function

Runs firstb
Defines PROCESS
block

c
Uses $_
placeholder

d

Runs laste
Download from Wow! eBook <www.wowebook.com>

230 CHAPTER 21 Creating your own “cmdlets” and modules

This function isn’t terribly different from the original one (refer back to listing 19.5 to
see that one). I’ve added a BEGIN block B and, at the end of the function, an END
block e. Whatever’s inside of the BEGIN block will execute the first time this function
is called in the pipeline; the END block will execute when the function is almost fin-
ished. As you can see, I don’t put any code in these, so nothing will happen during
those two stages. I could omit BEGIN and END entirely, but I like to include them to
keep the structure consistent across all of my functions.

 The PROCESS script block is where the magic happens c. This block will execute
one time for each object that’s piped into the function (if you don’t pipe in any input,
the PROCESS block will execute once). This script expects computer names to be piped
in, so if you pipe in four names, the PROCESS block will run four times. Each time, the
$_ placeholder d will be automatically populated with a new object from the pipe-
line. But rather than utilizing $_ directly, I’ve copied its object into the $computername
variable. Doing so has two advantages: First, my commands were already using $com-
putername, so continuing to use it means less work for me. Second, the variable name
is clearer than $_, making it easier for me to keep track of what the variable is sup-
posed to contain. There’s a third, overlooked advantage: $_ will be repopulated if an
error occurs, so by copying it to $computername now, I won’t lose the initial value.

 The last line of the script shows how you would execute this function: pipe a bunch
of string objects to it. So long as those objects are computer names, everything should
work fine. Another way to execute it would be this:

Get-ADComputer -filter * | Select -expand Name | Get-ServerInfo

That will retrieve all computers from Active Directory, expand their Name properties
into simple String objects, and pipe those String objects to the Get-ServerInfo
function.

 You could also add additional parameters, by including a standard Param() block
right at the top of the function, before the BEGIN block. Whatever values are passed to
those parameters will hold the same values each time the PROCESS block executes.

 That brings up an interesting problem: what if you want the cmdlet to accept com-
puter names either from the pipeline or from a parameter? In other words, you want
both of these to work:

Get-Content names.txt | Get-ServerInfo
Get-ServerInfo -computername (Get-Content names.txt)

Right now, the function won’t do that, because we don’t have a -computername param-
eter defined. The only input expected is that coming from the pipeline. So let’s add a
parameter, as shown next.

function Get-ServerInfo {
 param (

Listing 21.2 Adding a parameter to a filtering function
 [string]$computername
)

Download from Wow! eBook <www.wowebook.com>

231Functions that work in the pipeline

 BEGIN {}
 PROCESS {
 $computername = $_

 $os = Get-WmiObject Win32_OperatingSystem -computer $computername

 $disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername

 $obj = New-Object -TypeName PSObject

 $obj | Add-Member -MemberType NoteProperty `
 -Name ComputerName -Value $computername

 $obj | Add-Member -MemberType NoteProperty `
 -Name BuildNumber -Value ($os.BuildNumber)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SPVersion -Value ($os.ServicePackMajorVersion)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SysDriveFree -Value ($disk.free / 1MB -as [int])

 Write-Output $obj
 }
 END {}
}

Get-Content names.txt | Get-ServerInfo | Format-Table -auto

Now, however, we run into a problem. The original way of running the com-
mand—which is included at the bottom of the script listing—will continue to work. It
produces output that looks like this (assuming names.txt contained SERVER-R2 and
localhost):

ComputerName BuildNumber SPVersion SysDriveFree
------------ ----------- --------- ------------
server-r2 7600 0 0
localhost 7600 0 0

But the other way of running the function doesn’t work:

Get-ServerInfo -computername (Get-Content c:\names.txt)
Get-WmiObject : Cannot validate argument on parameter 'ComputerName'. The

argum
ent is null or empty. Supply an argument that is not null or empty and then

try
 the command again.
At line:9 char:60
+ $os = Get-WmiObject Win32_OperatingSystem -computer <<<<

$computerna
me
 + CategoryInfo : InvalidData: (:) [Get-WmiObject],

ParameterBindi

 ngValidationException

Download from Wow! eBook <www.wowebook.com>

232 CHAPTER 21 Creating your own “cmdlets” and modules

 + FullyQualifiedErrorId :
ParameterArgumentValidationError,Microsoft.Power

 Shell.Commands.GetWmiObjectCommand

Get-WmiObject : Cannot validate argument on parameter 'ComputerName'. The
argum

ent is null or empty. Supply an argument that is not null or empty and then
try

 the command again.
At line:12 char:19
+ -computer <<<< $computername
 + CategoryInfo : InvalidData: (:) [Get-WmiObject],

ParameterBindi
 ngValidationException
 + FullyQualifiedErrorId :

ParameterArgumentValidationError,Microsoft.Power
 Shell.Commands.GetWmiObjectCommand

ComputerName BuildNumber SPVersion SysDriveFree
------------ ----------- --------- ------------

Ouch. Lots of ugly errors. Here’s the problem: all of the code in the function lives
within the PROCESS block. We’re taking the computer name from the $_ placeholder,
which is populated with an object from the pipeline input. Except that we didn’t pipe
anything in, so the PROCESS block only executes once, and $_ never contains anything,
so $computername never contains anything, so nothing works. Sigh.

 You need to break the function into two pieces. That way, the main working part
can stand alone and can be used whether you’re getting input from the pipeline or
from a parameter. That part will be a behind-the-scenes function that won’t be called
directly—what I call a worker function. The second part will be the public function that
you want people to actually use. Its whole job will be to figure out where input is
coming from, and then to pass one computer name at a time to the worker function.

 You need to keep a couple of things in mind:

■ When input comes from the pipeline, the shell will enumerate through the
objects automatically, allowing you to work with one at a time. That’s what list-
ing 21.1 did. You can pass those objects, as they’re processed, to the worker
function.

■ When input comes from a parameter, you may have either one object or many
objects, but the PROCESS script block will only execute once regardless. So you’ll
have to manually enumerate, or unwind, the parameter so that you can get to
each object, one at a time.

Here’s the trick: PowerShell has a built-in variable called $PSBoundParameters, and it
contains each parameter that was manually specified. It has a ContainsKey() method
that will let you test to see if a particular parameter was used or not.
Download from Wow! eBook <www.wowebook.com>

233Functions that work in the pipeline

 Here we see the revised script, this time with two functions.

function GetServerInfoWork {
 param([string]$computername)
 $os = Get-WmiObject Win32_OperatingSystem -computer $computername

 $disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername

 $obj = New-Object -TypeName PSObject

 $obj | Add-Member -MemberType NoteProperty `
 -Name ComputerName -Value $computername

 $obj | Add-Member -MemberType NoteProperty `
 -Name BuildNumber -Value ($os.BuildNumber)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SPVersion -Value ($os.ServicePackMajorVersion)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SysDriveFree -Value ($disk.free / 1MB -as [int])

 Write-Output $obj
}
function Get-ServerInfo {
 param (
 [string[]]$computername
)
 BEGIN {
 $usedParameter = $False
 if ($PSBoundParameters.ContainsKey('computername')) {
 $usedParameter = $True
 }
 }
 PROCESS {
 if ($usedParameter) {
 foreach ($computer in $computername) {
 GetServerInfoWork -computername $computer
 }
 } else {
 GetServerInfoWork -computername $_
 }
 }
 END {}
}

Get-ServerInfo -verbose -computername (Get-Content c:\names.txt)
Get-Content c:\names.txt | Get-ServerInfo | Format-Table -auto

TRY IT NOW Note that you can’t run this script as-is. You have to comment out
one of the two last lines. Try running this with the last line commented out, and
then try running it a second time with only the next-to-last line commented out.

Listing 21.3 Breaking the function into two parts

Define worker functionb
Define single-string parameterc

Define array
parameter

d

See if parameter
is used

e

Check for
pipeline versus
parameter input

f
Unwind
parameter
input

g

Pass along
pipeline inputh
Download from Wow! eBook <www.wowebook.com>

234 CHAPTER 21 Creating your own “cmdlets” and modules

In this script, I started by pulling most of the function code into a worker function B.
You can see that I didn’t use the normal cmdlet-style naming convention for this one,
because I don’t expect people to call it directly. I declared a parameter for it c, and
set it up to accept a single string. The rest of the function is unchanged—I simply cut
and pasted it from the old Get-ServerInfo.

 In the revised public function, I declared the parameter to accept multiple
strings—that’s what the [string[]] denotes d. That way, the parameter will accept
one string, or several. In the BEGIN block, which executes first, I want to see if the
input is coming from the pipeline or via the parameter e. I start by assuming that the
input came from the pipeline, setting $usedParameter to $False. Then I test the
$PSBoundParameters variable, and if it does indeed contain the computername key,
then I know that the -computerName parameter was used, so I set $usedParameter to
$True. The $usedParameter variable is valid throughout the function; even though
it’s created in the BEGIN block, it will still be accessible in the PROCESS and END blocks.

 In the PROCESS block, I check that variable to see what to do f. Remember that PRO-
CESS will execute once if there is no pipeline input, so I use a ForEach loop to enumer-
ate the parameter input, passing each object to the worker function one at a time g.
On the other hand, if the input came from the pipeline, the PROCESS block is already
handling the enumeration, so I let it do its job and pass the $_ placeholder’s contents
to the worker function h.

 This may seem like a complex structure, but you can really use this as a template
for your own scripts. In fact, I use this exact script as a template all the time. The pub-
lic function’s structure doesn’t change much—I pretty much just change the parame-
ter name to suit. The worker function changes a lot, of course, because that’s where
the actual commands are being run.

 Note that it’s completely valid to have additional parameters. Listing 21.4 shows an
example, where I’ve added a -logfile parameter. Because I’m not expecting that one
to have pipeline input, it’s much easier to deal with. I just need to make sure I pass the
parameter to the worker function, and that the worker function is set up to deal with
it. You can see that I’m not using the parameter within the worker function; this is just
an example of how you’d do so in your own scripts.

function GetServerInfoWork {
 param([string]$computername,[string]$logfile)
 $os = Get-WmiObject Win32_OperatingSystem -computer $computername

 $disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername

 # use $logfile to get the value from the
 # -logfile parameter

Listing 21.4 Adding a second parameter
 $obj = New-Object -TypeName PSObject

Download from Wow! eBook <www.wowebook.com>

235Functions that look like cmdlets

 $obj | Add-Member -MemberType NoteProperty `
 -Name ComputerName -Value $computername

 $obj | Add-Member -MemberType NoteProperty `
 -Name BuildNumber -Value ($os.BuildNumber)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SPVersion -Value ($os.ServicePackMajorVersion)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SysDriveFree -Value ($disk.free / 1MB -as [int])

 Write-Output $obj
}
function Get-ServerInfo {
 param (
 [string[]]$computername,
 [string]$logfile
)
 BEGIN {
 $usedParameter = $False
 if ($PSBoundParameters.ContainsKey('computername')) {
 $usedParameter = $True
 }
 }
 PROCESS {
 if ($usedParameter) {
 foreach ($computer in $computername) {
 GetServerInfoWork -computername $computer `
 -logfile $logfile
 }
 } else {
 GetServerInfoWork -computername $_ `
 -logfile $logfile
 }
 }
 END {}
}

#Get-ServerInfo -verbose -computername (Get-Content c:\names.txt)
Get-Content c:\names.txt | Get-ServerInfo -logfile test.txt |
Format-Table -auto

TRY IT NOW You can see that I’ve commented out one of the script’s final lines,
so that I’m only running one test at a time.

21.3 Functions that look like cmdlets
We’re coming very close to creating a function that looks and works, for almost all
purposes, like a real cmdlet. About the only thing we’re missing is declarative pipe-
line input.

 In the previous example, I checked to see if the -computerName parameter was

used. If it was, I used the parameter, and if it wasn’t, I used $_ instead. With declarative

Download from Wow! eBook <www.wowebook.com>

236 CHAPTER 21 Creating your own “cmdlets” and modules

pipeline input, you can have the shell automatically attach the pipeline input to the
-computerName (or whatever) parameter, leaving you one less thing to deal with. At the
same time, you can ask the shell to do a lot of parameter input validation, like making
sure mandatory parameters are specified. All of this mainly involves messing around
with the Param() block to create a more formal kind of parameter declaration—a
cmdlet binding_style of declaration, to be exact. Finally, you don’t have to use PSBound-
Parameters: your input will always be in the variable defined for the parameter.

 The PROCESS script block will execute at least once, so you can simplify things a lot.
If input comes as a parameter, PROCESS will execute once and you’ll need to manually
enumerate what’s in that parameter (because it might be more than one thing). If
input comes from the pipeline, the parameter will only contain one thing at a time,
but you can still enumerate it, meaning that you can use the same exact code. This
makes the code less complicated, because PowerShell is doing a lot of the hard work
under the hood.

 The result, shown in listing 21.5, is informally called a script cmdlet by the Power-
Shell community and is formally called an advanced function in PowerShell’s documen-
tation. Run help about_functions_advanced* for help topics.

function GetServerInfoWork {
 param([string]$computername,[string]$logfile)
 $os = Get-WmiObject Win32_OperatingSystem -computer $computername

 $disk = Get-WmiObject Win32_LogicalDisk -filter "DeviceID='C:'" `
 -computer $computername

 # use $logfile to get the value from the
 # -logfile parameter

 $obj = New-Object -TypeName PSObject

 $obj | Add-Member -MemberType NoteProperty `
 -Name ComputerName -Value $computername

 $obj | Add-Member -MemberType NoteProperty `
 -Name BuildNumber -Value ($os.BuildNumber)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SPVersion -Value ($os.ServicePackMajorVersion)

 $obj | Add-Member -MemberType NoteProperty `
 -Name SysDriveFree -Value ($disk.free / 1MB -as [int])

 Write-Output $obj
}
function Get-ServerInfo {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory=$True,

Listing 21.5 Making our filtering function into an advanced function

CmdletBinding
directive

b

Parameter
attributes

c

 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]

Download from Wow! eBook <www.wowebook.com>

237Functions that look like cmdlets

 [Alias('host')]
 [string[]]$computername,
 [string]$logfile
)
 BEGIN {}
 PROCESS {
 foreach ($computer in $computername) {
 GetServerInfoWork -computername $computer `
 -logfile $logfile
 }
}
 END {}
}

#Get-ServerInfo -verbose -computername (Get-Content c:\names.txt)
Get-Content c:\names.txt | Get-ServerInfo | Format-Table -auto

The changes here were all made to the Get-ServerInfo public function. I started by
adding the [CmdletBinding()] directive B, which tells the shell that I’ll be using
the extended, cmdlet-style parameter attributes. I didn’t add any attributes to the
-logfile parameter, but I added three to the -computername parameter, declaring it
as mandatory, and indicating that it should accept input from the pipeline both
ByValue and ByPropertyName c. That means both of these examples will now work:

Get-ADComputer -filter * | Select @{l='computername';e={$_.name}} |
Get-ServerInfo

Get-Content names.txt | Get-ServerInfo

You’ll also see where I declared an alias for the parameter d, meaning that the even-
tual user of this function could use -host as well as -computername.

 In the body of the code, my only change was to remove $_ and use $computername
instead. Because the shell now knows that $computername is the target for pipeline
input, there’s no longer any need to use $_. When input is piped into the function,
$computername will contain one object at a time within the PROCESS script block, just
as $_ did in the filtering function earlier in this chapter. When input is fed through a
parameter, $computername will contain all the objects given to the parameter, so I enu-
merate them using a ForEach block.

 You can go a bit further with these functions. For example, earlier in this book you
learned that the -confirm and -whatif parameters are supported by most cmdlets
that attempt to modify the system. You can add that same kind of support to an
advanced function, and PowerShell does most of the work. To illustrate this, let’s use a
slightly different example, shown in the next listing.

function RebootWork {
 param([string]$computername)
 Get-WmiObject Win32_OperatingSystem -computer $computername |

Listing 21.6 Making a script cmdlet do something dangerous

Parameter
aliasd
 Invoke-WmiMethod -name Reboot | Out-Null
}

Download from Wow! eBook <www.wowebook.com>

238 CHAPTER 21 Creating your own “cmdlets” and modules

function Reboot-Server {
 [CmdletBinding(SupportsShouldProcess=$True,
 ConfirmImpact='High')]
 param (
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [Alias('host')]
 [string[]]$computername
)
 BEGIN {}
 PROCESS {
 foreach ($computer in $computername) {
 if ($pscmdlet.ShouldProcess($computer)) {
 RebootWork -computername $computer
 }
 }
 }
 END {}
}

Get-Content c:\names.txt | Reboot-Server -whatif

All I’ve done is added a bit of language to the cmdlet binding declaration b, telling it
that my function does support the ShouldProcess protocol. That turns on support for
the -whatif and -confirm parameters. In fact, if you were to ask for help on this func-
tion, those parameters would be listed even though we haven’t added any other help
to the function. Simply declaring support isn’t sufficient, though: we also need to
implement it. That’s done whether the computer names came from a parameter or
the pipeline, by using the built-in $pscmdlet object’s ShouldProcess() method c. If
the user runs the function with the -whatif parameter (as I did on the final line of
the script), ShouldProcess() will automatically display a what-if message and return
$False, so that the reboot action doesn’t actually happen. If the user runs the func-
tion with -confirm, the shell will perform the confirmation prompt and return $True
or $False according to the user’s confirmation input.

 The ConfirmImpact declaration b has an effect here: the shell has a built-in
$ConfirmPreference variable that is set to High by default. Confirmation prompting
happens automatically when ConfirmImpact is equal to, or higher than, the $Confim-
Preference variable. So, in this function, confirm prompting should happen even if
-confirm isn’t specified. The values for ConfirmImpact are Low, Medium, and High,
and it’s entirely up to your discretion which one you use. I tend to think of these set-
tings as, “what is the likelihood of someone getting fired if they do this accidentally?”

21.4 Bundling functions into modules
The next step is to make this function a little easier to distribute, and that involves
making it into a script module. All that means is saving the file with a specific filename,
in a specific location, so that others can load it into the shell by using the Import-

Add
SupportsShouldProcess

b

Test
ShouldProcess

c

Module cmdlet. Done properly, it will enable them to use our Get-ServerInfo or
Reboot-Server functions just like any other cmdlet.

Download from Wow! eBook <www.wowebook.com>

239Keeping support functions private

 Start by removing any code that isn’t contained within a function. For listings 21.5
and 21.6, for example, you’d remove the last line or two that I was using to test the
function.

 You need to come up with a name for the module. I often include multiple differ-
ent useful functions in a single file and use a name like DonTools. Save your script as
module-name.psm1, putting in the module name as the main portion of the filename.
For example, I’m naming it DonTools.psm1.

 With the file saved, you need to decide where to put it, and you have two choices:

■ If you don’t mind specifying a path to the file, you can put it anywhere. When
you use Import-Module to load the file, simply provide a full path and filename.

■ If you want to be able to load the module without a path (Import-Module
DonTools), then the module needs to go in a place where PowerShell can find
it. By default, the PSModulePath environment variable provides one place for
your own modules to go (and a second for Microsoft-supplied modules, which
we’ll ignore because I don’t work for them). This is the recommended location.

If you decide to go the second route, here’s what you’ll need to do:

1 In your Documents folder, create a folder named WindowsPowerShell if one
doesn’t already exist.

2 In that folder, create a subfolder named Modules.
3 In Modules, create a subfolder with your module’s name. In my case, the com-

plete path is /Documents/WindowsPowerShell/Modules/DonTools.
4 Move your module’s .psm1 file into that location.

If you’d rather use a file server as a central module repository, you can. Just modify the
PSModulePath environment variable to include that additional path.

21.5 Keeping support functions private
If you saved either listing 21.5 or 21.6 as a module and imported it, take a look at the
shell’s FUNCTION: drive by running dir function:. You’ll notice that your worker
functions show up, which isn’t what you want. Ideally, users should only see the public
function, and the worker function should be hidden.

 There’s an easy way to achieve that: by default, importing a module makes every
function inside of it available to users. But if the module includes specific instructions
for what should be visible, then only those things will be. Listing 21.7 is a revision of
listing 21.6, and you’ll see where I added a few specific instructions.

function RebootWork {
 param([string]$computername)
 Get-WmiObject Win32_OperatingSystem -computer $computername |
 Invoke-WmiMethod -name Reboot | Out-Null

Listing 21.7 Making a script module that has private functions
}
function Reboot-Server {

Download from Wow! eBook <www.wowebook.com>

240 CHAPTER 21 Creating your own “cmdlets” and modules

 [CmdletBinding(SupportsShouldProcess=$True,
 ConfirmImpact='High')]
 param (
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)]
 [Alias('host')]
 [string[]]$computername
)
 BEGIN {}
 PROCESS {
 foreach ($computer in $computername) {
 if ($pscmdlet.ShouldProcess($computer)) {
 RebootWork -computername $computer
 }
 }
}
 END {}
}

New-Alias rbt Reboot-Server

Export-ModuleMember -function Reboot-Server
Export-ModuleMember -alias rbt

The last three lines of code are the only additions. I’ve defined an alias, rbt, for the
Reboot-Server function. I’ve also specified that only that alias and the Reboot-
Server function should be visible to someone who imports this function into their
shell; the RebootWork function will remain hidden and inaccessible to users.

21.6 Lab
I have two tasks for you to accomplish in this lab. These might take you longer than
you have left in the current lunch hour, so feel free to spread them out over a couple
of days, if needed.

 First, write a filtering function. The ideal use for a filtering function is when you
need to pipe in some objects, analyze them in some way, and possibly remove some
from the pipeline. In this case, I want your function to accept computer names and
ping them. If the computer names are reachable, your function should output them.
If they aren’t reachable, drop them by simply not outputting them to the pipeline.
Call your function something like Test-Host or Ping-Host. You can use the Test-
Connection cmdlet to perform the ping.

 Second, write an advanced function (or script cmdlet, if you prefer that term) that
accepts computer names, either from the pipeline or through a -computerName
parameter. For each computer, display the drive letter and free space (in megabytes)
of any local, fixed disk that has less than 10 percent free space. Here’s a hint: you’ll
query the WMI Win32_LogicalDisk class and filter the results so that only those drives
having a DriveType property of 3 are included. Keep in mind that any given computer

might have more than one local disk, so you’ll have to account for that and filter the

Download from Wow! eBook <www.wowebook.com>

241Ideas for on your own

results accordingly. Your worker function should, however, consist entirely of a
parameter declaration and a one-line command. There’s no need to use an If,
ForEach, or other construct.

21.7 Ideas for on your own
We’re coming close to the end of this book, with just a few more chapters to go. Hope-
fully, you’re starting to think of some real-world tasks that you’d like to accomplish in
PowerShell. Which of those might involve writing a filtering function, an advanced
function, or a script module? Start making a list of things you’d like to create, and that
list will be a great starting point once you’ve wrapped up the next few chapters.
Download from Wow! eBook <www.wowebook.com>

Trapping and
handling errors
Anytime you’re dealing with computers, errors are bound to occur: network prob-
lems, permission denied, server not found ... you know what I’m talking about. For-
tunately, your PowerShell commands and scripts can plan for those errors and deal
with them, rather than spewing out a bunch of red text.

22.1 Dealing with errors you just knew were going to happen
To be clear, I’m not talking about errors that you make, such as typos, using the
wrong syntax, or something like that. Your errors are called bugs, and we’ll deal
with those in the next chapter. This chapter is going to deal with the errors that are
out of your control, but that you can usually anticipate. Here are some examples:

■ A “file not found” error
■ A “permission denied” error
■ The “RPC server not found” error that Get-WmiObject can produce
■ Other errors related to network connectivity

You can’t necessarily prevent these errors from happening, but when they happen you
may want to take some specific action. For example, you might want to log the names
of computers that can’t be reached, or prompt for a different filename if the one spec-
ified can’t be found. PowerShell offers you a number of ways to deal with these kinds
of errors, and we’ll cover the two most commonly used ways in this chapter.

22.2 Errors and exceptions
First, we need to get some terminology straight. Try running this command:
242

Get-WmiObject Win32_BIOS -computer notonline,localhost

Download from Wow! eBook <www.wowebook.com>

243The $ErrorActionPreference variable

Assuming you don’t have a computer named NOTONLINE on your network, this com-
mand will produce an error message, or what I’ll refer to as an error. It does that because
you didn’t tell it to do anything else, and because the shell’s default action for a non-
terminating problem is to display an error and try to keep going. Nonterminating sim-
ply means that, although the problem interrupted this particular operation, the
command is able to continue executing. In this example, it can continue trying the
next computer name that was specified.

 PowerShell doesn’t give you a way to deal with errors like this. It shouldn’t; after all,
the whole point of its default behavior is to report the problem and keep going. In many
cases, that’s perfectly acceptable. When you’re running a command from the com-
mand line, for example, error messages tell you what went wrong, and that’s sufficient.

 But if you’re running a script—especially a script that might be scheduled to run
unattended—you won’t be around to see the error message, and you’ll want the
option to do something about the problem, like logging it to a file. To do that, you
need to turn the error into an exception. Another way of saying this is that you need to
turn the nonterminating problem into a terminating one, forcing the shell to stop
executing the command, and to instead do what you tell it.

22.3 The $ErrorActionPreference variable
The shell’s default error-handling behavior is defined by a built-in variable called
$ErrorActionPreference. When you open a new shell session, this variable is set to
Continue. Its possible values, and their functions, are as follows:

■ SilentlyContinue—For nonterminating problems, don’t display an error mes-
sage—just keep going.

■ Continue—For nonterminating problems, display an error message and keep
going.

■ Inquire—For nonterminating problems, ask what to do using an interactive
prompt to which the user must respond.

■ Stop—Stop executing and throw an exception.

Anytime a command runs into a terminating problem from which it can’t recover and
continue, the behavior is always Stop. The exception thrown by Stop is something you
can trap and handle.

 Please, please, please, please, don’t ever put this at the top of a script:

$ErrorActionPreference = 'SilentlyContinue'

People do that (you’ll see it in internet examples all the time) because they anticipate
their script having a problem, and they know it’s safe to ignore it, and they don’t want
to see an error message. This is an incredibly poor practice, because it also suppresses
any error messages that might help you debug the script. For example, if you edit the

script and make a typo somewhere, you won’t see an error message when you run the

Download from Wow! eBook <www.wowebook.com>

244 CHAPTER 22 Trapping and handling errors

script, because you’re suppressing all error messages. Instead, if you want to suppress
error messages from a particular cmdlet, it’s best to do so just for that cmdlet, not for the
entire script.

22.4 The -ErrorAction parameter
The -ErrorAction parameter, or its alias -EA, is one of the common parameters sup-
ported by every cmdlet that runs in PowerShell. Using this parameter, you can over-
ride the $ErrorActionPreference setting for just that cmdlet.

 For example, if you wanted to suppress errors from Get-WmiObject, you could do
this:

Get-WmiObject Win32_Service -computer localhost,notonline

➥ -ea 'SilentlyContinue'

TRY IT NOW It’s safe to run all of the commands and scripts I’ll be showing
you in this chapter, so please follow along. If you happen to have a computer
named NOTONLINE on your network, just substitute something else (NOT-
HERE, NOTHING, and so on) for NOTONLINE in my examples.

The upside of this technique is that you won’t be suppressing all errors in an entire
script; you’ll only be suppressing the errors that you know for a fact you can safely ignore.

 This parameter is also the key to trapping and handling errors. If you don’t want to
ignore an error, you can set the error behavior to Stop for a specific cmdlet. Then, any
nonterminating errors encountered by that cmdlet will be turned into terminating
exceptions, which you can trap and handle.

 A trick with this is that you don’t want to have your cmdlet doing more than one
thing at a time. That way, if it encounters an error and turns it into a terminating
exception, you won’t have any work going undone. Accomplishing that trick is easy
within a pipeline function. For example, you don’t want to do this:

Get-WmiObject Win32_BIOS -comp Server-R2,NotOnline,LocalHost -ea Stop

Assuming the first and third computers are available, the command will stop running
when it fails to reach NOTONLINE. The command will never even try LOCALHOST,
and there’s no way to trap the error and tell the shell, “OK, go back and finish execut-
ing that last command.” Instead, we’ll build our command so that it only needs to exe-
cute against one computer at a time.

 This listing shows a brief example, using a pipeline (or filtering) function.

function Get-Stuff {
 PROCESS {
 Get-WmiObject Win32_BIOS -comp $_ -ea Stop
 }
}

Listing 22.1 Pipeline functions target one computer at a time
'Server-R2','Notonline','Localhost' | Get-Stuff

Download from Wow! eBook <www.wowebook.com>

245Using a Trap construct

The last line of that script pipes three computer names into the function, and the
PROCESS script block runs once for each computer name that was piped in. Each time
PROCESS executes, it places the next computer name into the $_ placeholder.

 Of course, because we aren’t handling the error, the end result of this example is
the same: once the command hits NOTONLINE, everything stops working. But now
we’ve created a framework in which we can trap and handle the error.

22.5 Using a Trap construct
The first technique I’ll show you is the more complicated of the two we’ll cover. It’s
called a Trap construct. You define this before you anticipate the error occurring,
meaning that the construct needs to appear in your script before the command that
might generate the error you want to trap. It’s possible to declare multiple Trap con-
structs, with each one trapping a different kind of error. In this chapter, we’ll stick
with a single, generic Trap that will catch anything; run help about_trap in the shell
to see examples of error-specific traps.

 The next listing extends listing 22.1, adding a Trap construct.

function Get-Stuff {
 PROCESS {
 trap {

 $_ | Out-File c:\errors.txt -append
 continue
 }
 Get-WmiObject Win32_BIOS -comp $_ -ea Stop
 }
}

'Server-R2','Notonline','Localhost' | Get-Stuff

Here’s what happens:

1 The last line in the script is the first to execute, and it pipes three computer
names into the function.

2 The function executes, running the command c. On the second execution, the
command has a computer name, NOTONLINE, that doesn’t exist. It generates a
nonterminating error, which -EA Stop turns into a terminating exception.

3 When it sees the terminating exception, PowerShell executes the Trap con-
struct B. In it, we pipe the current computer name, which is still in the $_
placeholder, into a file, appending it to whatever is already in the file.

4 The Trap construct ends with the keyword continue, which tells the shell to
resume execution within the same scope d. That means the shell stays within
the PROCESS script block and attempts to execute Get-WmiObject with the
remaining computer name.

Listing 22.2 Adding a Trap to our pipeline function

When an exception
occurs, the trap
executes

B

The command
executes first

c

Execution resumes
inside the same blockd
Download from Wow! eBook <www.wowebook.com>

246 CHAPTER 22 Trapping and handling errors

The other way to end a Trap is by using the keyword break. That exits the current
scope and passes the exception up to the parent scope. We’ll cover scope in just a
moment, but before we do, I’d like to offer one minor improvement to the script.

 Before the function starts executing its PROCESS script block, it will look for a BEGIN
script block and execute that first. We can use that to delete the error log file, so that
we get a fresh file each time. It’s possible that attempting to do so will generate an
error if the file doesn’t already exist, so we can suppress that error using -EA. This list-
ing shows the finished function.

function Get-Stuff {
 BEGIN {
 del c:\errors.txt -ea SilentlyContinue
 }
 PROCESS {
 trap {
 $_ | Out-File c:\errors.txt -append
 continue
 }
 Get-WmiObject Win32_BIOS -comp $_ -ea Stop
 }
}

'Server-R2','Notonline','Localhost' | Get-Stuff

22.6 Trap scope
Trap constructs are especially sensitive to scope, which is a system of containers that the
shell applies around certain elements (you learned about them first in chapter 17).
When you start using a new PowerShell session, you’re in the top-level, global scope.
When you run a script, the shell creates a new scope around the script, so that any-
thing that happens in the script stays more self-contained. If a script creates a new
alias, or a new variable, then all that happens within the script’s scope. When the
script finishes, its scope is discarded, along with anything that was created within that
scope. Functions also get their own scope, as do Trap constructs.

 When a terminating exception occurs, the shell looks for a Trap construct within
the same scope as whatever command caused the exception. If the shell doesn’t find a
trap there, it exits that scope and passes the exception up to the parent scope.

 This listing illustrates this—an example will be a lot clearer than a long explanation.

trap {
 $_ | Out-File c:\errors.txt -append
 continue
}

function Get-Stuff {

Listing 22.3 Deleting the error file at the beginning of the function

Listing 22.4 Moving the Trap construct to outside the function

Trap is within
 script scopeb

Delete filec

 BEGIN {
 del c:\errors.txt -ea SilentlyContinue

Download from Wow! eBook <www.wowebook.com>

247Using a Try construct

 }
 PROCESS {
 Get-WmiObject Win32_BIOS -comp $_ -ea Stop
 }
}

'Server-R2','Notonline','Localhost' | Get-Stuff
Write-Host "Done"

All I’ve done here is move the Trap construct to the beginning of the script, outside
the function. Here’s what happens when I run this:

1 The command executes first e, piping three computer names to the function.
Right now, we’re in the script’s scope.

2 The BEGIN script block executes, deleting any existing file c. This enters the
function’s scope, and the function’s scope becomes a child of the script,
because the function is contained within the script.

3 The PROCESS script block begins executing d. On its second iteration, it gener-
ates a terminating exception because NOTONLINE isn’t available, and because
-EA Stop is the error action.

4 The shell doesn’t find a Trap construct within the function, so it exits the func-
tion’s scope, passing the exception. Because the function is a child of the script,
the shell exits into the script’s scope.

5 Now the shell tries to find a Trap within the script’s scope, and it finds one B. It
executes the Trap, which ends with continue.

6 Because we used continue, the shell will execute the next line of code in the
same scope. Right now, we’re in the script scope—remember that we exited the
function’s scope to look for a Trap. We can’t re-enter the function at this point.
So the next line of code advises us that the script has finished running f.

All of this scope stuff can be very hard to keep track of. The easy rule to remember is
to put your trap as close as possible to whatever command might generate an error.
Doing so keeps you in the same scope as that command, so that you can try to resume
execution.

 Overall, I find the Trap construct to be confusing and hard to keep track of, so I
don’t use it much. I tend to use it only when I want to have a very top-level way of
catching any otherwise-unhandled errors. For more specific errors, PowerShell v2
introduced a Try construct, which I find to be easier.

22.7 Using a Try construct
The Try construct eliminates the need to keep track of scopes, continuing, and so
forth. It’s a much simpler construct. Like Trap, it can be used to provide different
actions for different exceptions.

 For these examples, I’ll be sticking with the simplest form, which handles all
exceptions the same way. If you want to see examples of a Try construct that handles

Exception
generated

d

Command
executes first

e

Next line in current scopef
different exceptions differently, run help about_try_catch in the shell.

Download from Wow! eBook <www.wowebook.com>

248 CHAPTER 22 Trapping and handling errors

 The following listing shows the revised function, now using a Try instead of a Trap.

function Get-Stuff {
 BEGIN {
 del c:\errors.txt -ea SilentlyContinue
 }
 PROCESS {
 Try {
 Get-WmiObject Win32_BIOS -comp $_ -ea Stop
 } Catch {
 $_ | Out-File c:\errors.txt -append
 }
 }
}

'Server-R2','Notonline','Localhost' | Get-Stuff

The differences between listings 22.4 and 22.5 are all within the PROCESS script block.
I start with the keyword Try, and like all constructs, it can contain one or more com-
mands within curly braces. In those braces, I’ve placed the command that I think
might cause a problem. I’m still using -EA Stop to ensure that any nonterminating
errors become terminating exceptions.

 If an exception does occur, the shell will immediately jump to the Catch portion of
the construct, and execute whatever commands are contained within its curly braces.
There’s no jumping out of scope like there was with Trap, and the shell will always
resume execution immediately following the Catch portion. In this case, that brings it
to the end of the PROCESS script block, so it can loop back up and repeat the PROCESS
script block for its third iteration.

TRY IT NOW Just a quick reminder that you should be typing these in, or
downloading them from MoreLunches.com, and reviewing the results.
Because some of these commands generate lengthy results, and because the
results aren’t as important as what’s happening in the script, I’ll continue to
omit the script output and focus on the script itself.

There’s another option for using Try, which is to add a Finally portion. This portion
executes whether there is an error or not. Here’s a quick example:

Try {
 Get-WmiObject Win32_BIOS -comp $_ -ea Stop
} Catch {
 $_ | Out-File c:\errors.txt -append
} Finally {
 Write-Host "Command executed"
}

It’s legal to have just two of these parts: you always have to have the Try portion, and

Listing 22.5 Using a Try construct instead of the more complicated Trap
you can have either a Catch, a Finally, or both a Catch and a Finally. As I mentioned

Download from Wow! eBook <www.wowebook.com>

249The -ErrorVariable parameter

earlier, you can also include multiple Catch blocks if you want to handle different
exceptions in different ways.

 I also mentioned earlier that I like to use Trap constructs as a high-level catch for
unanticipated errors, and stick with Try for specific errors on specific commands.
That implies that you can use both Trap and Try together, and you can. Here is a
quick example of that.

trap {
 "Unexpected error!" | Out-File c:\errors.txt -append
 continue
}

function Get-Stuff {
 BEGIN {
 del c:\errors.txt -ea SilentlyContinue
 }
 PROCESS {
 Try {
 Get-WmiObject Win32_BIOS -comp $_ -ea Stop
 } Catch {
 $_ | Out-File c:\errors.txt -append
 }
 }
}

'Server-R2','Notonline','Localhost' | Get-Stuff

Any errors in Get-WmiObject will be handled by the Try construct. Its Catch portion
logs the failed computer name, which is a very specific action. In the event that some
terminating exception occurs elsewhere, the shell will eventually find the Trap con-
struct at the top of the script (even if it has to exit the function’s scope to do so), and
that will log a more generic error message.

 Right now, I think the only way the Trap would execute is if Get-WmiObject ran
into a problem, and Out-File wasn’t able to write to Errors.txt (perhaps because the
file was marked as read only). In that case, the shell would have to execute the Trap
construct—but it would fail also, because it’s trying to write to the same file! You might
want to modify this script yourself to handle the top-level error in a different fashion.

22.8 The -ErrorVariable parameter
One thing I haven’t done so far is look at the error that occurred, and there are plenty
of reasons why you might want to do so. For example, logging the actual error mes-
sage, as opposed to just a computer name, might provide information that lets you
better troubleshoot and solve the problem.

 There are two ways to access information about an exception. One is to use the
built-in $error variable. That variable is a collection, and the first item in the collec-

Listing 22.6 Using Trap and Try in the same script
tion ($error[0]) will be the exception that occurred most recently.

Download from Wow! eBook <www.wowebook.com>

250 CHAPTER 22 Trapping and handling errors

 I prefer to use the other way, which is to specify a variable that I want an error
placed into. That’s done by using the -ErrorVariable parameter, or its alias -EV. This
is another one of the common parameters—the same set of parameters that -EA came
from. All cmdlets support both -EA and -EV, although cmdlets’ help files only list the
common parameters set name.

 The next listing is another revision to our script, this time specifying that errors be
captured in the $WmiError variable.

function Get-Stuff {
 BEGIN {
 del c:\retry.txt -ea SilentlyContinue
 del c:\errors.txt -ea SilentlyContinue
 }
 PROCESS {
 Try {
 Get-WmiObject Win32_BIOS -comp $_ -ea Stop -ev WmiError
 } Catch {
 $_ | Out-File c:\retry.txt -append
 $WmiError | Out-File c:\errors.txt -append
 }
 }
}

'Server-R2','Notonline','Localhost' | Get-Stuff

I only made a few minor changes to the script:

■ In the BEGIN script block, I’m now deleting two files. I want to keep the com-
puter names in a separate file, which I’m now calling Retry.txt, so that I can
quickly retry those computer names later. I’ll log error information to
Errors.txt.

■ In the Try construct, I’ve added -EV WmiError, specifying that any errors be
placed into the $WmiError variable. Note that the variable name isn’t preceded
with a $ symbol here!

■ In the Catch block, I’ve changed the filename that the computer name is writ-
ten to. I’m writing the error to the Errors.txt file. Because I want to access the
contents of $WmiError, I do use the $ symbol here.

In case you’re curious, here are the contents of Errors.txt after running this script:

PS C:\Users\Administrator> gc c:\errors.txt
Get-WmiObject : The RPC server is unavailable. (Exception from HRESULT:

0x800706BA)
At line:8 char:20
+ Get-WmiObject <<<< Win32_BIOS -comp $_ -ea Stop -ev WmiError
 + CategoryInfo : InvalidOperation: (:) [Get-WmiObject],

COMException
 + FullyQualifiedErrorId :

Listing 22.7 Capturing the error into a variable and logging it to a file
GetWMICOMException,Microsoft.PowerShell.Commands.GetWmiObjectCommand

Download from Wow! eBook <www.wowebook.com>

251Lab

Command execution stopped because the preference variable
"ErrorActionPreference" or common parameter is set to

 Stop: The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)

22.9 Common points of confusion
As I’ve pointed out, I personally find the Trap construct to be a bit confusing and hard
to follow. The main reason it’s in PowerShell is because it was easier for PowerShell’s
programmers to create, and it was all they had time to do for v1. Now that v2 has the
more sensible Try construct, I think that’s what most people tend to use.

 I want to quickly refocus on this business of when to use the $ with a variable, and
when not to. Technically, the $ isn’t a part of the variable’s name. The $ tells the shell
that the following characters will be a variable name, up to the next white space. If the
variable name is enclosed in curly braces, the name may contain spaces. When I use the
-EV parameter, I want to tell it the name of the variable I want it to use, and that doesn’t
include the $. When I want to access the contents of a variable, I prefix the name with $.

 For example, suppose I specified -EV $WmiError. In that case, the error would be
placed into a variable named after whatever was inside $WmiError! If $WmiError was
empty at the time, the shell wouldn’t know what to do (and would generate another
error).

 This can be a bit confusing, but it’s something you’ll have to keep track of: when
the shell needs a variable name from you, that name never includes the $. When you
want to get to the information that’s inside a variable, you specify the $ before the vari-
able name.

22.10 Lab
The scripting in listing 22.8 includes several commands that might cause an error,
either because a file doesn’t exist or because a computer can’t be contacted. Add
error handling to the script so that it ignores “file not found” errors, and so that it logs
the names of any computers that can’t be contacted. You can use either kind of error
handling, but I suggest sticking with the Try construct.

 Note that this is slightly tricky because there are two calls to WMI involved. Here’s a
hint: you can safely assume that if the first WMI command works, the second one will
also work.

function Get-Inventory {
 BEGIN {
 Remove-Item c:\retries.txt
 }
 PROCESS {
 $os = Get-WmiObject Win32_OperatingSystem -comp $_
 $bios = Get-WmiObject Win32_BIOS -comp $_
 $obj = New-Object -TypeName PSObject

Listing 22.8 A script for you to add error handling to
 $obj | Add-Member -MemberType NoteProperty -Name ComputerName

Download from Wow! eBook <www.wowebook.com>

252 CHAPTER 22 Trapping and handling errors

 ➥ -Value ($_)
 $obj | Add-Member -MemberType NoteProperty -Name OSBuild
 ➥ -Value ($os.buildnumber)
 $obj | Add-Member -MemberType NoteProperty -Name SPVersion
 ➥ -Value ($os.servicepackmajorversion)
 $obj | Add-Member -MemberType NoteProperty -Name BIOSSerial
 ➥ -Value ($bios.serialnumber)
 Write-Output $obj
 }
}

'localhost','server-r2' | Out-File c:\names.txt
Get-Content names.txt | Get-Inventory | Export-CSV c:\inventory.csv

22.11 Ideas for on your own
Make a short list of other errors that you might anticipate, and the commands that
might cause them. As you start writing your own scripts in the future, refer to that list.
When you find yourself using a command that you think might generate an error,
build in your error-handling right from the start.
Download from Wow! eBook <www.wowebook.com>

Debugging techniques
Anytime you’ve typed more than two letters on your keyboard, you have created an
opportunity for mistakes to creep in. In the programming world, those mistakes are
called bugs. Although using PowerShell isn’t necessarily programming, we Power-
Shell jockeys use the word bug, too.

 Fun story: The word bug, as applied to computers behaving incorrectly, actually
came from a real insect (a moth) that got trapped inside Harvard University’s Mark
II Aiken Relay Calculator. The moth got stuck in one of the computer’s relays, caus-
ing the computer to generate incorrect results. The whole story is told at http://
www.jamesshuggins.com/h/tek1/first_computer_bug.htm.

23.1 An easy guide to eliminating bugs
There are two broad categories of bugs in the PowerShell world (actually, this
applies to software in general, but we’ll stick with PowerShell). The first category is
syntax errors, and the second is logic errors.

23.1.1 Syntax errors

Syntax errors are by far the easiest to deal with, and we won’t spend much time on
them in this chapter. A syntax error simply means you typed something wrong. It
might be a command name that you misspelled (Gte-Content instead of Get-
Content, for example), or it might be that you got the actual syntax of the com-
mand wrong (forgetting the hyphen between the verb and noun of a cmdlet name,
or using a colon instead of a space to separate a parameter’s name and value).
Whatever the cause, correcting your typing will solve the problem.
253

Download from Wow! eBook <www.wowebook.com>

254 CHAPTER 23 Debugging techniques

 Best of all, PowerShell will usually tell you, in explicit detail, where the problem is.
PowerShell might not always know what the problem is, but it will usually get pretty
close to the location of the error. For example, here’s a syntactically incorrect com-
mand and the resulting error message:

PS C:\> get-content -file names.txt
Get-Content : A parameter cannot be found that matches parameter name
 'file'.
At line:1 char:18

That’s pretty clear: I used a parameter named -file, and PowerShell couldn’t find one.
The error occurred on line 1 of my command, at character position 18. You might
notice that character position 18 is where the parameter value, names.txt, is located. It’s
a bit odd that PowerShell chose to pinpoint that as the location of the error, but once
you understand that that’s how it works, you’ll understand future error messages.

 Ultimately, the problem here is that I didn’t read the help file to find out what param-
eters were available. Fixing the problem is as simple as reading that help file, and see-
ing that -path is the parameter I’m after, not -file.

 You can help yourself avoid this kind of error by using a quality third-party Power-
Shell console or editor, such as SAPIEN PrimalScript (www.primalscript.com), Idera
PowerShell Plus (www.idera.com), or PowerGUI (www.powergui.org; there are both
free and commercial versions). These products all include a few common features:

■ Code hinting—Reminds you of the available parameters and helps type them for
you—saving time, and helping to protect against typos.

■ Syntax highlighting—Colors valid syntax elements in a specific way, with invalid
syntax often getting a different color. That helps to visually alert you to a poten-
tial problem.

■ Live syntax checking—Works a bit like the spell-check feature in Microsoft Word:
the product puts a red underline underneath bits it doesn’t think are correct,
such as invalid parameter names.

You might not believe this, but I regularly see students struggling with simple syntax
errors, mostly because they won’t take the time to read the actual error message. I
understand where they’re coming from. Frankly, I freak out a little bit when all that red
text starts spilling across the screen. I think it reminds me of grade school, when my
teachers were ruthless with that red pen. But if you slow down, read the error message,
and think about what it’s saying, you can usually point your eyes directly at the problem.
Read the help, and look at some of the examples in the help to see if you can figure out
the correct way to proceed. Double-check your punctuation in particular.

 Here’s a checklist:

■ Make sure you typed the cmdlet name correctly. If you used an alias, make sure
it’s typed correctly, and that it points to the cmdlet you think it does. You can
run Get-Alias alias (insert your alias name for alias) to double-check which

cmdlet an alias points to.

Download from Wow! eBook <www.wowebook.com>

255An easy guide to eliminating bugs

■ Make sure parameter names are preceded by a dash and are followed by a
space. Make sure you’re using the correct parameter name (read the help!),
and if you’re abbreviating the parameter name, make sure you’re providing
enough characters to uniquely identify that parameter.

■ Most of PowerShell’s punctuation comes in pairs: single quotes, double quotes,
square brackets, curly braces, and parentheses are all good examples. Make
sure that you end every set that you start, and that you properly nest them.
Improper nesting, like ({this)}, means you’re ending a pair before ending the
pair it encloses. In that example, I closed the parentheses before the curly
braces, which is the opposite of the correct order.

■ Watch your spaces. In PowerShell, spaces are special characters that indicate a
separation between command elements. PowerShell isn’t that case-sensitive
(meaning that upper- and lowercase are usually the same to the shell), but it’s
very space-sensitive. There’s a space after a cmdlet name and before any param-
eters or values. There’s a space in between parameter names and values.
There’s a space after one parameter and before the next. Don’t forget those.

That’s really everything you need to know about syntax errors. They’re a pain in the neck,
but they shouldn’t be that difficult to fix. Just pay close attention to what you’re typing.

23.1.2 Logic errors

Logic errors mean that your script or command isn’t doing what you want it to do, but

Above and beyond

I’m not kidding about the red text freaking me out. It’s especially embarrassing when
someone is looking over my shoulder. Half the time, I’ll just run Cls (which is an alias
to Clear-Host) to make it all go away, rather than reading the message. Try getting
an error in the middle of a conference session demonstration, with a thousand people
watching you! No pressure!

So here’s a trick I use: I’ll change the color of the error message text to green. Seri-
ously, I do.

(Get-Host).PrivateData.ErrorForegroundColor = 'green'

That only lasts for the duration of the shell session, so I’ll either put that in a profile
script (more on those in chapter 24), or I’ll just remember to do it before I start working
in the shell. The green text makes me feel a lot better, and it doesn’t look so aggressive
when it pops up in the middle of a demonstration.

You can also change the ErrorBackgroundColor, WarningForegroundColor,
WarningBackgroundColor, and other colors. TechNet has a nice “Modifying Message
Colors” article on the available options (http://mng.bz/1037). I’ll also cover these
in more detail in chapter 24.
it’s not necessarily generating an error.

Download from Wow! eBook <www.wowebook.com>

256 CHAPTER 23 Debugging techniques

 Some logic errors will produce straightforward errors. You should know what to do
with a “file not found” error, for example, or an “access denied” message, but some-
times errors aren’t always so clear. Get-WmiObject, for example, can produce an “RPC
server not found” error if it’s not able to locate a remote computer, or if that computer
can’t accept the WMI connection (perhaps because of a firewall or a permissions issue).

 But the most vexing logic errors are the ones that don’t produce any error at
all—they just prevent your script or command from working properly. This next list-
ing is an example—go ahead and open this script in the PowerShell ISE and run it, or
just run it from the PowerShell console host.

$name = Read-Host "Enter computer name"
if (test-connection $name) {
 get-wmiobject win32_bios -computername $nmae
}

Logic errors, like syntax errors, can come from typos, and one of the errors in listing
23.1 is a simple typo. Logic errors also come from what I call a bad assumption: you’re
assuming that a particular variable, cmdlet output, or property contains one thing,
when, in fact, it contains something entirely different. Although listing 23.1 is pretty
short, it manages to contain a bad assumption as well as a typo.

 Debugging causes a lot of frustration for a lot of administrators. I’ll try and make it
simpler by telling you exactly what you need to know to debug any script or command,
no matter how complicated it is:

■ You can’t debug a script or command unless you have a clear expectation of
what it’s going to do.

■ You must execute your script and examine its reality (what it actually does), and
compare that reality to your expectations. When reality and your expectations
differ, you have found the bug.

■ While executing the script and examining it, you need to read very, very care-
fully, so that you can spot typos. Sometimes using a different font can help.

In the next three sections, I’ll use listing 23.1 as an example, and show you different
ways to debug it.

23.2 Identifying your expectations
If you don’t know what a command or script should do, then you can never debug it.
Period, end of statement, thanks for reading. That’s why my first step in debugging is
to document my exact expectations. I’m experienced enough that I can often do so in
my head for a short script or simpler command, but for more complex ones I dig out
a piece of paper and a pen and write everything down. We’re doing to do that with list-
ing 23.1, so that you can see the process involved. I can’t tell you enough how useful
this approach has been in helping me debug some incredibly complicated scripts, and

Listing 23.1 A short script containing logic errors
I encourage you to use this approach whenever you have to debug anything.

Download from Wow! eBook <www.wowebook.com>

257Adding trace code

 I want to emphasize that I’m documenting my expectations; that isn’t necessarily
going to be the same as what is correct. I’m not teaching you how listing 23.1 works at
this point. Instead, I’m telling you what I expect it to do, based on a quick read-
through of the commands.

 Let’s begin with line 1:

$name = Read-Host "Enter computer name"

I expect that this will display “Enter computer name:” on the screen, and allow me to
type something. Whatever I type will be stored in the variable $name.

 Line 2:

if (test-connection $name) {

My expectation is that this will run the Test-Connection command, passing it the
computer name in $name. In other words, I expect that this will ping the computer
name I typed. I see that this is enclosed in an If construct, so I expect that Test-
Connection must return a True or False value. So, if the computer can be pinged, it
will return True, and whatever is inside the If construct will execute next.

 Line 3:

get-wmiobject win32_bios -computername $nmae

I expect that this will run Get-WmiObject and retrieve the Win32_BIOS class. I’ve used
Get-WmiObject before, and I know that the -class parameter is in the first position, so
Win32_BIOS is going to be fed to the -class parameter. I see that the -computerName
parameter is also specified, and it’s being passed the computer name from the $name
variable. Oh, wait—there’s a typo. See, just a careful read-through of the script found
a problem. I’m going to leave the typo in there, though, and pretend that I wasn’t being
so careful with it. I want to show you some other ways that you might have found it.

 Finally, line 4:

}

That closes the If construct. Were I using one of the third-party editors that I men-
tioned earlier, I might even use a brace-matching feature to double-check the If con-
struct’s braces. Such a feature will highlight all the code in between two braces (or
brackets, or parentheses, or quotes, or whatever), so that you can visually verify that
you ended everything you started. If you’re using one of those products, consult its
documentation on how to check brace or construct matching.

 With my expectations written down, it’s time to start seeing where they differ from
reality.

23.3 Adding trace code
The first trick I’ll show you is to add trace code to the script. It all starts with a helpful
command called Write-Debug, which simply takes a message that you want it to display:

Write-Debug "Test message"
TRY IT NOW See if you can run this command in PowerShell.

Download from Wow! eBook <www.wowebook.com>

258 CHAPTER 23 Debugging techniques

If you’re following along, you’ll notice that Write-Debug doesn’t produce any output.
Not very useful, is it?

Write-Debug actually sends your message to an alternate pipeline, called the Debug
pipeline. PowerShell has several of these alternate pipelines: Error, Warning, Debug,
and so forth. Each of them is controlled by a kind of on/off switch called a preference
variable. By default, the Debug pipeline’s switch is set to SilentlyContinue, which is
the same as Off. The result is that all Write-Debug messages are suppressed, or hid-
den, by default.

 To see the debug messages, you need to change the value of that on/off switch,
and it can be changed in several places. If you change it in the shell itself, the change
will affect everything that happens in that shell session, which isn’t necessarily what
you want. Alternately, if you change the setting from within a script, it’ll only affect
that script—everything else you do in the shell will be unchanged.

 For this example, I’ll change the setting just in the script by adding this to the top:

$DebugPreference = "Continue"

Now I’m free to add Write-Debug statements to my script. The next listing shows the
revised script.

$DebugPreference = "Continue"

$name = Read-Host "Enter computer name"
write-debug "`$name contains $name"

if (test-connection $name) {
 write-debug "Test-connection was True"
 get-wmiobject win32_bios -computername $nmae
} else {
 write-debug "Test-connection was False"
}

The first addition was a call to Write-Debug, asking it to display the contents of the
variable $name. What I’ve done here is a really cool trick:

■ Because I used double quotation marks, PowerShell will look for the $ charac-
ter. Whenever it sees it, the shell will assume that all following characters, to the
next white space, form a variable name. The shell will then replace the variable
name, and the $ character, with the contents of that variable.

■ The first time I refer to the variable, I precede the $ character with the backtick
(`) character, which is PowerShell’s escape character. That character can be
really tough to distinguish from a single quote in certain fonts, but trust me, it’s
different. It’s on the upper left of a U.S. keyboard, on the same key as the tilde
(~) character. The backtick takes away the special meaning of the $ character,
so that PowerShell doesn’t “see” the first $name as a variable.

Listing 23.2 Script with trace output added
TRY IT NOW Try running this script in the shell, and see what happens.

Download from Wow! eBook <www.wowebook.com>

259Adding trace code

You’ll also notice that I added a Write-Debug to the inside of the If construct. I even
added an Else portion to the construct, containing a third Write-Debug message.
That way, no matter which way the If construct’s logic goes, I’ll see some output and
know what’s happening inside the script.

 If you’re following along, you should have seen the following output (assuming
you entered SERVER-R2 for the computer name):

Enter computer name: SERVER-R2
DEBUG: $name contains SERVER-R2
DEBUG: Test-connection was True
Get-WmiObject : Cannot validate argument on parameter 'ComputerName'.
 The argument is null or empty. Supply an argument that is not null o
r empty and then try the command again.
At C:\demo.ps1:8 char:43

That’s where you’ll realize that there’s a typo in that $name variable. PowerShell is
clearly telling us that there’s a problem with the -computerName parameter; if we look
carefully at just that portion of the script, the $nmae typo is more obvious.

 I’ll fix that now and run the script again. Here’s a portion of the output:

Enter computer name: SERVER-R2
DEBUG: $name contains SERVER-R2
DEBUG: Test-connection was True

SMBIOSBIOSVersion : 6.00
Manufacturer : Phoenix Technologies LTD
Name : PhoenixBIOS 4.0 Release 6.0

That looks like what I want.
 Now I need to test the opposite situation: what happens when I provide a com-

puter name that isn’t valid?

Enter computer name: nothing
DEBUG: $name contains nothing
Test-Connection : Testing connection to computer 'nothing' failed: Th
e requested name is valid, but no data of the requested type was foun
d
At C:\demo.ps1:6 char:20

Oops. Not what I was hoping for. That’s a logic error: the Test-Connection cmdlet
clearly isn’t doing what I expected, which was to return a simple True or False value.

 Let’s step out of the script, and just work with the Test-Connection cmdlet from
the command line:

PS C:\> test-connection server-r2

Source Destination IPV4Address IPV6Address
------ ----------- ----------- -----------
SERVER-R2 server-r2 192.168.10.10 fe80::ec31:bd61:d42...
SERVER-R2 server-r2 192.168.10.10 fe80::ec31:bd61:d42...

SERVER-R2 server-r2 192.168.10.10 fe80::ec31:bd61:d42...
SERVER-R2 server-r2 192.168.10.10 fe80::ec31:bd61:d42...

Download from Wow! eBook <www.wowebook.com>

260 CHAPTER 23 Debugging techniques

PS C:\> test-connection nothing
Test-Connection : Testing connection to computer 'nothing' failed: Th
e requested name is valid, but no data of the requested type was foun
d
At line:1 char:16

Okay, that’s definitely not what I expected. When I use the command with a valid com-
puter name, I get back a table of results, not a True or False value. When I use it with
an invalid computer name, I still get an error.

 Time to read the help, by running Help Test-Connection -full. The -full part
is very important, because I want very detailed information on the cmdlet and its
behavior. Reading through the help, I see that the command “returns the echo
response replies.” The help also says that, “unlike the traditional ‘ping’ command,
Test-Connection returns a Win32_PingStatus object ... but you can use the -quiet
parameter to force it to return only a Boolean value.” Yes, please!

 Looking at the -quiet parameter, I see it “suppresses all errors and returns $True
if any pings succeed and $False if all failed.” That’s what I want, so I’ll modify the
script accordingly:

$DebugPreference = "Continue"

$name = Read-Host "Enter computer name"
write-debug "`$name contains $name"

if (test-connection $name -quiet) {
 write-debug "Test-connection was True"
 get-wmiobject win32_bios -computername $name
} else {
 write-debug "Test-connection was False"
}

And I’ll run it again, testing it with both a valid and an invalid computer name. Here’s
the output:

PS C:\> ./demo
Enter computer name: server-r2
DEBUG: $name contains server-r2
DEBUG: Test-connection was True

SMBIOSBIOSVersion : 6.00
Manufacturer : Phoenix Technologies LTD
Name : PhoenixBIOS 4.0 Release 6.0
SerialNumber : VMware-56 4d 45 fc 13 92 de
 5b 86
Version : INTEL - 6040000

PS C:\> ./demo
Enter computer name: nothing
DEBUG: $name contains nothing
DEBUG: Test-connection was False
Download from Wow! eBook <www.wowebook.com>

261Working with breakpoints

That’s what I want, so the script is now debugged. I don’t need to remove all the
Write-Debug statements, either. In fact, I may want to leave them there in case I ever
need to debug this again. For now, I’ll just set $DebugPreference back to its default of
SilentlyContinue, which will suppress the output of Write-Debug. (Doing that in no
way harms the performance of the script, and it’s a very convenient way to switch
between production mode and debugging mode.)

 Here’s the script one last time:

$DebugPreference = "SilentlyContinue"

$name = Read-Host "Enter computer name"
write-debug "`$name contains $name"

if (test-connection $name -quiet) {
 write-debug "Test-connection was True"
 get-wmiobject win32_bios -computername $name
} else {
 write-debug "Test-connection was False"
}

Whenever I begin working on a script, I add the Write-Debug statements as I go. I
know there will be a bug or two in there eventually, so building in the debugging from
the start makes debugging faster when the time comes. Here are my guidelines:

■ Whenever I change the contents of a variable, I use Write-Debug to output the
variable, just so I can check those contents.

■ Whenever I’m going to read the value of a property or a variable, I use Write-
Debug to output that property or variable, so that I can see what’s going on
inside the script.

■ Any time I have a loop or logic construct, I build it in such a way that I get a
Write-Debug message no matter how the loop or logic works out. In this exam-
ple, I added an Else section specifically to have debug output—the Else por-
tion of the construct has no other purpose.

Of course, in a really long script, having to wade through a lot of debug messages to
track down a problem can be time-consuming. Is there a more efficient technique?
You bet there is!

23.4 Working with breakpoints
We’re going to revert back to the original script in listing 23.1. It isn’t a long script, but
it will suffice to illustrate breakpoints, a great feature of PowerShell v2. Note that this
discussion will focus solely on what’s available in the PowerShell console host and the
PowerShell ISE; third-party editors often provide similar (and better) breakpoint func-
tionality, but they typically implement it in a different way. You’ll have to consult your
product’s manual if you’re using one of those editors.
Download from Wow! eBook <www.wowebook.com>

262 CHAPTER 23 Debugging techniques

 A breakpoint is a defined area where a script will pause its execution, allowing you to
examine the environment that the script is running within. PowerShell can be config-
ured to break when

■ Your script reaches a certain line
■ A variable is read and/or changed
■ A specific command is executed

In the first instance, you must specify the script file that you’re referring to. In the sec-
ond and third situations, you can choose to specify a script, and the breakpoint will
only be active for that script. If you don’t, the breakpoint will occur globally through-
out the shell when that variable is read or written, or that command is executed.

 Going back to listing 23.1, suppose I want to have the script stop immediately after
line 1 finishes executing, meaning that I want to break before line 2. I’ve saved the
script as C:\Demo.ps1, so in the shell I’ll run this command:

PS C:\> set-psbreakpoint -script c:\demo.ps1 -line 2

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 demo.ps1 2

The shell confirms that it has set the breakpoint. I also want to be notified whenever
the $name variable is accessed, so I’ll run this:

PS C:\> set-psbreakpoint -script c:\demo.ps1 -variable name -mode read

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 1 demo.ps1 name

Again, the shell confirms. Notice that the variable’s name is just name, and not $name.
Variable names don’t include the dollar sign; $ is just a cue to the shell telling it that
you wish to use the contents of a variable. In this case, I don’t want to refer to the con-
tents of $name; I want to refer to the variable name itself.

 With those two breakpoints set, I’ll run the script. After entering the computer
name, the script will break. The shell modifies the command-line prompt, indicating
that I’m in suspend mode. Here I can examine the contents of variables, execute com-
mands, and so on. When I’m done, I can run Exit to resume script execution. Here’s
how it all looks:

PS C:\> ./demo
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on 'C:\demo.ps1:2'

demo.ps1:3 $name = Read-Host "Enter computer name"
[DBG]: PS C:\>>> exit
Enter computer name: server-r2

Hit Variable breakpoint on 'C:\demo.ps1:$name' (Read access)

Download from Wow! eBook <www.wowebook.com>

263Common points of confusion

demo.ps1:4 write-debug "`$name contains $name"
[DBG]: PS C:\>>> $name
server-r2
[DBG]: PS C:\>>> test-connection $name -quiet
True
[DBG]: PS C:\>>>

This gives me the chance to test commands, see what’s inside variables or properties,
and so forth, without having to add a lot of Write-Debug commands. You’ll notice, in
fact, that the shell generates its own debug output automatically as part of the break-
point process, and that it automatically turns the Debug pipeline on for the duration
of the script’s execution.

 When I’m done debugging, I can remove the breakpoints:

PS C:\> Get-PSBreakpoint | Remove-PSBreakpoint

And I can go back to executing my script normally. Working this way takes a bit of get-
ting used to, but it’s a very effective debugging tool once you do so.

 Breakpoints are also supported within the PowerShell ISE. To set a line breakpoint,
move your cursor to the desired line and press F9. You can still set command and vari-
able breakpoints, but you have to run Set-PSBreakpoint from the command
pane—there’s no function key or graphical shortcut. The ISE will visually indicate
where line breakpoints occur, using a red highlight. If you run the script within the
ISE, breakpoint lines will be highlighted in yellow when the script reaches one of
those lines. At that time, you can hover your cursor over any variable to see a tooltip
with the contents of that variable. It’s a vaguely similar experience to working in a full-
fledged development environment like Visual Studio, albeit with much more simplis-
tic functionality.

23.5 Common points of confusion
The biggest single mistake I see students make when it comes to debugging is some-
thing I call shotgun debugging. It means they see an error, they panic, and they start
changing everything they can, without taking the time to verify what was wrong.

 Take my original example in listing 23.1: I’ve used that same example in dozens of
classes, and as you know, that example is purposely buggy. When I ask the class to try
to fix it, there’s almost always one student who spends half an hour checking network
connectivity, logging off and logging back on, rebooting the remote computer, and so
on, assuming all the while that the script must be fine, and that the problem lies in the
infrastructure somewhere.

 Don’t get caught in that trap. When a script or command isn’t working the way you
think it should, say three things to yourself:

■ I need to figure out exactly what I think each line of this script is supposed to do.
■ I need to assume that every command is incorrect, and read the help to verify

each parameter. I should run each command individually in a test environment

to make sure it works the way the script thinks it works.

Download from Wow! eBook <www.wowebook.com>

264 CHAPTER 23 Debugging techniques

■ I need to examine property and variable contents to make sure they contain
what I think they contain.

If you can discipline yourself to slowing down, taking a deep breath, and debugging in
a calm, methodical fashion that focuses on expectations versus reality, you’ll never
meet a script you can’t debug.

23.6 Lab
Listing 23.3 is a script that includes a function. At the end of the script (on line 14) is
a command that actually runs the function. The goal is to get a table that includes
each computer’s name, its Windows build number, and its BIOS serial number. The
script definitely has bugs in it—both syntax and logic. Fix them.

function Get-Inventory {
 PROCESS {
 $computername = $_
 $os = Get-WmiObject Win32_OperatingSystem -comp $computername
 $bios = Get-WmiObject Win32_BIOS -comp $computername
 $ojb = New-Object PSObject
 $obj | Add-Membrr NoteProperty ComputerName $computername
 $obj | Add-Member NoteProperty OSBuild ($os.buildnumber)
 $obj | Add-Member NoteProperty BIOSSerial ($bios.serialno)
 Write-Output $ojb
 }
}

localhost,server-r2 | get-inventory

Remember that one of my suggested best practices is for you to always spell out full
cmdlet and parameter names in a script, and that includes scripts given to you by
other people. That would be a good place to start with this one: correcting the names.
In the case of the Add-Member cmdlet, this script doesn’t even include parameter
names—they’re all positional. You should consider correcting that, too, by adding in
the appropriate parameter names. Use the help files to guide you.

 As a tip, SAPIEN PrimalScript includes a feature on its edit menu that will convert
aliases to their full cmdlet names. You may be able to find a free plug-in for PowerGUI
that does something similar, and perhaps also expands the parameter names. If you
use a different editor (other than the PowerShell ISE), ask the vendor to supply a cmd-
let and parameter name expansion feature in a future version.

Listing 23.3 Chapter 23 lab script
Download from Wow! eBook <www.wowebook.com>

Additional random tips,
tricks, and techniques
We’re nearing the end of your “month of lunches,” and the next chapter is your final
exam, where you’ll tackle a complete administrative task from scratch. Before you
do, I’d like to share a few extra tips and techniques to round out your education.

24.1 Profiles, prompts, and colors: customizing the shell
Every PowerShell session starts out the same: the same aliases, the same PSDrives,
the same colors, and so forth. Why not make the shell a little bit more customized?

24.1.1 PowerShell profiles

I’ve explained before that there’s a difference between a PowerShell hosting appli-
cation and the PowerShell engine itself. A hosting application, such as the console
or the PowerShell ISE, is a way for you to send commands to the actual PowerShell
engine. The engine executes your commands, and the hosting application is
responsible for displaying the results. Another thing that the hosting application is
responsible for doing is loading and running profile scripts each time the shell starts.

 These profile scripts can be used to customize the PowerShell environment, by
loading snap-ins or modules, changing to a different starting directory, defining
functions that you’ll want to use, and so forth. For example, here’s the profile script
that I use on my computer.

Import-Module ActiveDirectory

Listing 24.1 Don’s PowerShell profile script
265

Add-PSSnapin SqlServerCmdletSnapin100
cd c:\

Download from Wow! eBook <www.wowebook.com>

266 CHAPTER 24 Additional random tips, tricks, and techniques

My profile loads the two shell extensions that I use the most, and it changes to the
root of my C: drive, which is where I like to begin working. You can put any commands
you like into your profile.

 There’s no default profile, and the exact profile script that you create will depend
a bit upon how you want it to work. Details are available if you run help
about_profiles, but you mainly need to consider whether or not you’ll be working in
multiple hosting applications. For example, I tend to switch back and forth between
the regular console and the PowerShell ISE, and I like to have the same profile run-
ning for both, so I have to be careful to create the right profile script file in the right
location. I also have to be careful about what goes into that profile, because I’m using
it for both the console and the ISE—some commands that tweak console-specific set-
tings like colors can cause an error when run in the ISE.

 Here are the files that the console host tries to load, and the order in which it tries
to load them:

1 $pshome/profile.ps1—This will execute for all users of the computer, no mat-
ter which host they’re using (remember that $pshome is predefined within Pow-
erShell and contains the path of the PowerShell installation folder).

2 $pshome/Microsoft.PowerShell_profile.ps1—This will execute for all users of
the computer if they’re using the console host. If they’re using the PowerShell
ISE, the $pshome/Microsoft.PowerShellISE_profile.ps1 script will be executed
instead.

3 $home/Documents/WindowsPowerShell/profile.ps1—This will execute only
for the current user (because it lives under the user’s home directory), no mat-
ter which host they’re using.

4 $home/Documents/WindowsPowerShell/Microsoft.PowerShell_profile.ps1—
This will execute for the current user if they’re using the console host. If they’re
using the PowerShell ISE, the $home/Documents/WindowsPowerShell/Micro-
soft.PowerShellISE_profile.ps1 script will be executed instead.

If one or more of these scripts doesn’t exist, there’s no problem. The hosting applica-
tion will simply skip it and move on to the next one.

 On 64-bit systems, there are variations for both 32- and 64-bit scripts, since there
are separate 32- and 64-bit versions of PowerShell itself. You won’t always want the
same commands run in the 64-bit shell as you do the 32-bit shell. For example, some
modules and other extensions are only available for one or the other architecture, so
you wouldn’t want a 32-bit profile trying to load a 64-bit module into the 32-bit shell,
because it won’t work!

 Note that the documentation in about_profiles is different from what I’ve listed
here, and my experience is that the preceding list is correct. Here are a few more
points about that list:
Download from Wow! eBook <www.wowebook.com>

267Profiles, prompts, and colors: customizing the shell

■ $pshome is a built-in PowerShell variable that contains the installation folder for
PowerShell itself; on most systems, that’s in C:\Windows\System32\WindowsPow-
erShell\v1.0 (for the 64-bit version of the shell on a 64-bit system).

■ $home is another built-in variable that points to the current user’s profile folder
(such as C:\Users\Administrator).

■ I’ve used “Documents” to refer to the Documents folder, but on some versions
of Windows it will be “My Documents.”

■ I’ve written “no matter which host they’re using,” but that technically isn’t true.
It’s true of hosting applications (the console and the ISE) written by Microsoft,
but there’s no way to force the authors of non-Microsoft hosting applications to
follow these rules.

Because I want the same shell extensions to load whether I’m using the console host
or the ISE, I chose to customize $home\Documents\WindowsPowerShell\profile.ps1,
because that profile is run for both of the Microsoft-supplied hosting applications.

TRY IT NOW Why don’t you try creating one or more profile scripts for yourself?
Even if all you put in them is a simple message, such as Write "It Worked", this
is a good way to see the different files in action. Remember that you have to
close the shell (or ISE) and re-open it to see the profile scripts run.

Keep in mind that profile scripts are scripts and are subject to your shell’s current exe-
cution policy. If your execution policy is Restricted, your profile won’t run; if your
policy is AllSigned, your profile must be signed. Chapter 14 discussed the execution
policy and script signing.

24.1.2 Customizing the prompt

The PowerShell prompt—the PS C:\> that you’ve seen through much of this
book—is generated by a built-in function called Prompt. If you want to customize the
prompt, you can simply replace that function. Defining a new Prompt function is
something that can be done in a profile script, so that your change takes effect each
time you open the shell.

 Here’s the default prompt:

function prompt
{
 $(if (test-path variable:/PSDebugContext) { '[DBG]: ' }
 else { '' }) + 'PS ' + $(Get-Location) `
 + $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '
}

This prompt first tests to see if the $DebugContext variable is defined in the shell’s
VARIABLE: drive. If it is, this function adds [DBG]: to the start of the prompt. Other-

wise, the prompt is defined as PS along with the current location, which is returned by

Download from Wow! eBook <www.wowebook.com>

268 CHAPTER 24 Additional random tips, tricks, and techniques

the Get-Location cmdlet. If the shell is in a nested prompt, as defined by the built-in
$nestedpromptlevel variable, the prompt will have >> added to it.

 This next listing is an alternative prompt function. You could enter this directly
into any profile script to make it the standard prompt for your shell sessions.

function prompt {
 $time = (Get-Date).ToShortTimeString()
 "$time [$env:COMPUTERNAME]:> "
}

This alternative prompt displays the current time, followed by the current computer
name (which will be contained within square brackets). Note that this leverages
PowerShell’s special behavior with double quotation marks, in which the shell will
replace variables (like $time) with their contents.

24.1.3 Tweaking colors

In previous chapters, I’ve men-
tioned how stressed-out I can get
when a long series of error messages
scrolls by in the shell. I always strug-
gled in English class when I was a
kid, and seeing all that red text
reminds me of the essays I’d get
back from Ms. Hansen, all marked
up with a red pen. Yuck. Fortu-
nately, PowerShell gives you the abil-
ity to modify most of the default
colors it uses.

 The default text foreground and
background colors can be modified
by clicking on the control box in the
upper-left corner of PowerShell’s
window. From there, select Proper-
ties, and then select the Colors tab,
which is shown in figure 24.1.

 Modifying the colors of errors,
warnings, and other messages is a
bit trickier and requires you to run
a command. But you could put this command into your profile, so that it executes
each time you open the shell. Here’s how to change the error message foreground
color to green, which I find a lot more soothing:

Listing 24.2 Custom PowerShell prompt

Figure 24.1 Configuring the default shell
screen colors
(Get-Host).PrivateData.ErrorForegroundColor = "green"

Download from Wow! eBook <www.wowebook.com>

269Operators: -as, -is, -replace, -join, -split

You can change colors for the following settings:

■ ErrorForegroundColor

■ ErrorBackgroundColor

■ WarningForegroundColor

■ WarningBackgroundColor

■ DebugForegroundColor

■ DebugBackgroundColor

■ VerboseForegroundColor

■ VerboseBackgroundColor

■ ProgressForegroundColor

■ ProgressBackgroundColor

And here are some of the colors you can choose:

■ Red

■ Yellow

■ Black

■ White

■ Green

■ Cyan

■ Magenta

■ Blue

There are also dark versions of most of these colors: DarkRed, DarkYellow, DarkGreen,
DarkCyan, DarkBlue, and so on.

24.2 Operators: -as, -is, -replace, -join, -split
In chapter 8, I briefly introduced you to the -as operator, and there are four addi-
tional operators that I’d like you to know about.

24.2.1 -as and -is

The -as operator produces a new object in an attempt to convert an existing object
into a different type. For example, if you have a number that contains a decimal (per-
haps from the result of a division operation), you can drop the decimal portion by
converting, or casting, the number to an integer:

1000 / 3 -as [int]

The object to be converted comes first, then the -as operator, and then, in square
brackets, the type you want to convert to. Types can include [string], [xml], [int],
[single], [double], [datetime], and others, although those are probably the ones
you’ll use the most. Technically, this example of converting to an integer will round
the fractional number to an integer, rather than just truncating the fractional portion

of the number.

Download from Wow! eBook <www.wowebook.com>

270 CHAPTER 24 Additional random tips, tricks, and techniques

 The -is operator works similarly: it’s designed to return True or False if an object
is of a particular type or not. Here are a few one-line examples:

123.45 -is [int]
"SERVER-R2" -is [string]
$True -is [bool]
(Get-Date) -is [datetime]

TRY IT NOW Try running each of these one-line commands in the shell to see
the results.

24.2.2 -replace

The -replace operator is designed to locate all occurrences of one string within
another and replace those occurrences with a third string:

PS C:\> "192.168.34.12" -replace "34","15"
192.168.15.12

The source string comes first, followed by the -replace operator. Then you provide
the string you want to search for within the source, followed by a comma and the
string you want to use in place of the search string. In the preceding example, I
replaced “34” with “15.”

24.2.3 -join and -split

The -join and -split operators are designed to convert arrays to delimited lists and
vice versa.

 For example, suppose I created an array with five elements:

PS C:\> $array = "one","two","three","four","five"
PS C:\> $array
one
two
three
four
five

This works because PowerShell treats a comma-separated list as an array automatically.
Now, let’s say I want to join this array together into a pipe-delimited string—I can do
that with -join:

PS C:\> $array -join "|"
one|two|three|four|five

Saving that result into a variable will let me reuse it, or even pipe it out to a file:

PS C:\> $string = $array -join "|"
PS C:\> $string
one|two|three|four|five
PS C:\> $string | out-file data.dat

The -split operator does the opposite: it takes a delimited string and makes an array
from it. For example, suppose you have a tab-delimited file containing one line and

four columns. Displaying the contents of the file might look like this:

Download from Wow! eBook <www.wowebook.com>

271String manipulation

PS C:\> gc computers.tdf
Server1 Windows East Managed

Keep in mind that Gc is an alias for Get-Content.
 You can use the -split operator to break that into four individual array elements:

PS C:\> $array = (gc computers.tdf) -split "`t"
PS C:\> $array
Server1
Windows
East
Managed

Notice the use of the escape character (a backtick) and a “t” to define the tab charac-
ter. That had to be in double quotes so that the escape character would be recognized.

 The resulting array has four elements, and you can access them individually by
using their index numbers:

PS C:\> $array[0]
Server1

24.3 String manipulation
Suppose you have a string of text, and you need to convert it to all uppercase letters. Or
perhaps you need to get the last three characters from the string. How would you do it?

 In PowerShell, strings are objects, and they come with a great many methods.
Remember that a method is simply a way of telling the object to do something, usually
to itself, and that you can discover the available methods by piping the object to Gm:

PS C:\> "Hello" | gm

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method int CompareTo(System.Object value...
Contains Method bool Contains(string value)
CopyTo Method System.Void CopyTo(int sourceInde...
EndsWith Method bool EndsWith(string value), bool...
Equals Method bool Equals(System.Object obj), b...
GetEnumerator Method System.CharEnumerator GetEnumerat...
GetHashCode Method int GetHashCode()
GetType Method type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
IndexOf Method int IndexOf(char value), int Inde...
IndexOfAny Method int IndexOfAny(char[] anyOf), int...
Insert Method string Insert(int startIndex, str...
IsNormalized Method bool IsNormalized(), bool IsNorma...
LastIndexOf Method int LastIndexOf(char value), int ...
LastIndexOfAny Method int LastIndexOfAny(char[] anyOf),...
Normalize Method string Normalize(), string Normal...
PadLeft Method string PadLeft(int totalWidth), s...
PadRight Method string PadRight(int totalWidth), ...

Remove Method string Remove(int startIndex, int...
Replace Method string Replace(char oldChar, char...

Download from Wow! eBook <www.wowebook.com>

272 CHAPTER 24 Additional random tips, tricks, and techniques

Split Method string[] Split(Params char[] sepa...
StartsWith Method bool StartsWith(string value), bo...
Substring Method string Substring(int startIndex),...
ToCharArray Method char[] ToCharArray(), char[] ToCh...
ToLower Method string ToLower(), string ToLower(...
ToLowerInvariant Method string ToLowerInvariant()
ToString Method string ToString(), string ToStrin...
ToUpper Method string ToUpper(), string ToUpper(...
ToUpperInvariant Method string ToUpperInvariant()
Trim Method string Trim(Params char[] trimCha...
TrimEnd Method string TrimEnd(Params char[] trim...
TrimStart Method string TrimStart(Params char[] tr...
Chars ParameterizedProperty char Chars(int index) {get;}
Length Property System.Int32 Length {get;}

Some of the more useful String methods include the following:

■ IndexOf() tells you the location of a given character within the string.

PS C:\> "SERVER-R2".IndexOf("-")
6

■ Split(), Join(), and Replace() operate similarly to the -split, -join, and
-replace operators I described in the previous section. I tend to use the Power-
Shell operators rather than the String methods.

■ ToLower() and ToUpper() convert the case of a string.

PS C:\> $computername = "SERVER17"
PS C:\> $computername.tolower()
server17

■ Trim() removes white space from both ends of a string; TrimStart() and
TrimEnd() remove white space from the beginning or end of a string.

PS C:\> $username = " Don"
PS C:\> $username.Trim()
Don

All of these String methods are great ways to manipulate and modify String objects.
Note that all of these methods can be used with a variable that contains a string (as in
the ToLower() and Trim() examples), or they can be used directly with a static string
(as in the IndexOf() example).

24.4 Date manipulation
Like String objects, Date (or DateTime, if you prefer) objects come with a great many
methods that allow date and time manipulation and calculation:
PS C:\> get-date | gm

 TypeName: System.DateTime

Name MemberType Definition
---- ---------- ----------
Add Method System.DateTime Add(System.TimeSpan ...

AddDays Method System.DateTime AddDays(double value)
AddHours Method System.DateTime AddHours(double value)

Download from Wow! eBook <www.wowebook.com>

273Date manipulation

AddMilliseconds Method System.DateTime AddMilliseconds(doub...
AddMinutes Method System.DateTime AddMinutes(double va...
AddMonths Method System.DateTime AddMonths(int months)
AddSeconds Method System.DateTime AddSeconds(double va...
AddTicks Method System.DateTime AddTicks(long value)
AddYears Method System.DateTime AddYears(int value)
CompareTo Method int CompareTo(System.Object value), ...
Equals Method bool Equals(System.Object value), bo...
GetDateTimeFormats Method string[] GetDateTimeFormats(), strin...
GetHashCode Method int GetHashCode()
GetType Method type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
IsDaylightSavingTime Method bool IsDaylightSavingTime()
Subtract Method System.TimeSpan Subtract(System.Date...
ToBinary Method long ToBinary()
ToFileTime Method long ToFileTime()
ToFileTimeUtc Method long ToFileTimeUtc()
ToLocalTime Method System.DateTime ToLocalTime()
ToLongDateString Method string ToLongDateString()
ToLongTimeString Method string ToLongTimeString()
ToOADate Method double ToOADate()
ToShortDateString Method string ToShortDateString()
ToShortTimeString Method string ToShortTimeString()
ToString Method string ToString(), string ToString(s...
ToUniversalTime Method System.DateTime ToUniversalTime()
DisplayHint NoteProperty Microsoft.PowerShell.Commands.Displa...
Date Property System.DateTime Date {get;}
Day Property System.Int32 Day {get;}
DayOfWeek Property System.DayOfWeek DayOfWeek {get;}
DayOfYear Property System.Int32 DayOfYear {get;}
Hour Property System.Int32 Hour {get;}
Kind Property System.DateTimeKind Kind {get;}
Millisecond Property System.Int32 Millisecond {get;}
Minute Property System.Int32 Minute {get;}
Month Property System.Int32 Month {get;}
Second Property System.Int32 Second {get;}
Ticks Property System.Int64 Ticks {get;}
TimeOfDay Property System.TimeSpan TimeOfDay {get;}
Year Property System.Int32 Year {get;}
DateTime ScriptProperty System.Object DateTime {get=if ((& {...

Note that the properties enable you to access just a portion of a DateTime, such as the
day, year, or month:

PS C:\> (get-date).month
10

The methods enable two things: calculations, and conversions to other formats. For
example, to get the date for 90 days ago, I like to use AddDays() with a negative number:

PS C:\> $today = get-date
PS C:\> $90daysago = $today.adddays(-90)
PS C:\> $90daysago
Saturday, July 24, 2010 11:26:08 AM

Download from Wow! eBook <www.wowebook.com>

274 CHAPTER 24 Additional random tips, tricks, and techniques

The methods whose name start with “To” are designed to provide dates and times in
an alternative format, such as a short date string:

PS C:\> $90daysago.toshortdatestring()
7/24/2010

These methods all use your computer’s current regional settings to determine the cor-
rect way of formatting dates and times.

24.5 Dealing with WMI dates
WMI tends to store date and time information in difficult-to-use strings. For example,
the Win32_OperatingSystem class tracks the last time a computer was started, and the
date and time information looks like this:

PS C:\> get-wmiobject win32_operatingsystem | select lastbootuptime

lastbootuptime

20101021210207.793534-420

PowerShell’s designers knew you wouldn’t be able to easily use this information, so
they added a pair of conversion methods to every WMI object. Pipe any WMI object to
Gm and you can see those methods at or near the end:

PS C:\> get-wmiobject win32_operatingsystem | gm

 TypeName:
System.Management.ManagementObject#root\cimv2\Win32_OperatingSystem

Name MemberType Definition
---- ---------- ----------
Reboot Method System.Management...
SetDateTime Method System.Management...
Shutdown Method System.Management...
Win32Shutdown Method System.Management...
Win32ShutdownTracker Method System.Management...
BootDevice Property System.String Boo...
...
PSStatus PropertySet PSStatus {Status,...
ConvertFromDateTime ScriptMethod System.Object Con...
ConvertToDateTime ScriptMethod System.Object Con...

I’ve cut out most of the middle of this output so that you can easily find the Convert-
FromDateTime() and ConvertToDateTime() methods. In this case, what we start with
is a WMI date and time, and we want to convert to a normal date and time, so we’d do
it like this:

PS C:\> $os = get-wmiobject win32_operatingsystem
PS C:\> $os.ConvertToDateTime($os.lastbootuptime)

Thursday, October 21, 2010 9:02:07 PM
Download from Wow! eBook <www.wowebook.com>

275Dealing with WMI dates

If you want to make that date and time information part of a normal table, you can
use Select-Object or Format-Table to create custom, calculated columns and prop-
erties:

PS C:\> get-wmiobject win32_operatingsystem | select BuildNumber,__SERVER,@{
l='LastBootTime';e={$_.ConvertToDateTime($_.LastBootupTime)}}

BuildNumber __SERVER LastBootTime
----------- -------- ------------
7600 SERVER-R2 10/21/2010 9:02:07 PM
Download from Wow! eBook <www.wowebook.com>

Final exam: tackling an
administrative task

from scratch
Congratulations! You’ve completed all of the main chapters in this book, and
you’re ready to put your new knowledge to use. I find that having a practical task in
front of you is a great way to cement newly acquired skills, and this chapter’s sole
purpose is to give you that task.

25.1 Tips before you begin
Before you get started, however, I want to offer a few tips.

■ You probably will get stuck. I almost always do. Don’t be afraid to ask for help!
You can use the community forums at www.PoshComm.org, or you can log
into my own forums at http://connect.ConcentratedTech.com (if you’re
asked where you took a class with me, just answer “Lunches book” and you’ll
be allowed in). Manning (www.manning-sandbox.com/forum.jspa?forumID=
723) also has a forum dedicated to this book where you can post questions,
and I try to monitor those a couple of times a week.

■ Spend some time breaking the task down to its main components. Figure out
which parts of the task involve the real functionality, and focus on writing
commands that create the desired output.

■ Once you have completed the necessary commands, you can worry about
writing functions and other structures around those commands.

25.2 Lab
This lab is going to be a bit different. I’m going to specify a number of criteria,
276

and your job is to create the final result. I'll walk you through the solution in

Download from Wow! eBook <www.wowebook.com>

277Lab

the next section, rather than sending you to MoreLunches.com for the sample
solution.

 Your job is to create a script module that contains a function named Get-OSInfo.
You want this function to produce output that includes a computer name, operating-
system build number, BIOS serial number, and the last boot date and time for the
operating system. The final result should look something like this:

ComputerName OSBuild BIOSSerial LastBoot
------------ ------- ---------- --------
localhost 7600 VMware-56 4d 45 ... 10/21/2010 9:02:...
server-r2 7600 VMware-56 4d 45 ... 10/21/2010 9:02:...

TRY IT NOW Start by writing a simple script that just produces this output.
Don’t worry about parameters; hardcode the server names for now. Don’t
worry about functions and other structure now, either—just get this output to
appear on the screen.

Your function should be written as an advanced function (a script cmdlet, if you pre-
fer). It should have two parameters, -computerName and -logFile. You should be able
to execute the function by using any of these patterns (assuming, of course, that
SERVER-R2 is a valid computer name):

PS C:\> 'localhost','server-r2' | Get-OSInfo
PS C:\> Get-OSInfo -computername 'localhost'
PS C:\> Get-OSInfo -host 'localhost','server-r2'

If the -logFile parameter isn’t supplied, no log should be created. But if the parame-
ter is supplied with a path and filename, your function should delete any existing file
of that name when it first runs, and then write any computer names that could not be
contacted to that file.

 Here are some additional criteria:

■ Include comment-based help that describes how Get-OSInfo works, including
examples.

■ When someone imports your module, they should only see Get-OSInfo and an
alias, goi. No other contents of the module should be visible to the user.

■ You’ll need to query Win32_OperatingSystem and Win32_BIOS. But if the first
of those queries fails, you should not even try to perform the second query.

■ The last boot time should be displayed as a human-readable date and time.
■ If the function is run without providing a -computerName parameter, the shell

should automatically prompt for a parameter value. The function shouldn’t run
if -computerName isn’t supplied.

TRY IT NOW Stop reading here, and see what you can accomplish. Chapters
20 and 22, in particular, should provide some helpful pointers, if you need to
refer back to them.
Download from Wow! eBook <www.wowebook.com>

278 CHAPTER 25 Final exam: tackling an administrative task from scratch

Remember that you don’t need to construct this all at once. Instead, start small, with a
command or two that accomplishes the core tasks of retrieving the information you
need. Then start to build a structure around those commands that will provide the
other capabilities, such as parameters, prompting, help, and so forth.

25.3 Lab solution
There are many ways to accomplish this task in PowerShell, but listing 25.1 shows how
I chose to solve this task. Note that I saved this as /Documents/WindowsPowerShell/
Modules/MyModule/MyModule.psm1, and I imported it into the shell by running
Import-Module MyModule.

function GetOSInfo B
{
 param
 (
 [string]$name, c
 [string]$logfile
)
 try {
 $continue = $True d
 $os = Get-WmiObject Win32_OperatingSystem `
 -computerName $name -ea 'Stop' e
 } catch {
 if ($logFile -ne '') {
 $name | Out-File $logfile -append f
 }
 $continue = $False
 }
 if ($continue) { g
 $bios = Get-WmiObject Win32_BIOS ` h
 -computername $name
 $obj = New-Object PSObject i
 $obj | Add-Member NoteProperty ComputerName $name
 $obj | Add-Member NoteProperty OSBuild ($os.buildnumber)
 $obj | Add-Member NoteProperty BIOSSerial ($bios.serialnumber)
 $obj | Add-Member NoteProperty LastBoot `
 ($os.ConvertToDateTime($os.lastbootuptime))
 Write-Output $obj j
 }
}

<#
.SYNOPSIS
Retrieves key information from the specified computer(s) 1)
.DESCRIPTION
Get-OSInfo uses WMI to retrieve information from the
Win32_OperatingSystem and Win32_BIOS classes. The result
is a combined object, included translated date/time
information for the computer's most recent restart.

Listing 25.1 Get-OSInfo and its supporting code, in a script module
.PARAMETER computername
The computer name, or names, to query.

Download from Wow! eBook <www.wowebook.com>

279Lab solution

.PARAMETER logFailures
Include this parameter to have failed computer names
logged to a file. Specify the filename as the value
for this parameter.
.EXAMPLE
Assuming names.txt contains one computer name per line:
 Get-Content names.txt | Get-OSInfo -log c:\errors.txt
.EXAMPLE
Assuming the ActiveDirectory module is available, this
example retrieves information from all computers in the
domain:
 Get-ADComputer -filter * | Select -expand name | 1!
 Get-OSInfo
.EXAMPLE
Just use a single, manually-specified computer:
 Get-OSInfo -computername SERVER-R2
#>
function Get-OSInfo
{
 [CmdletBinding()] 1@
 param
 (
 [Parameter(Mandatory=$True,
 ValueFromPipeline=$True,
 ValueFromPipelineByPropertyName=$True)] 1#
 [Alias('host')] 1$
 [string[]]$computerName,
 [string]$logFile = '' 1%
)

 BEGIN
 {
 if ($logFile -ne '') { 1^
 Del -Path $logFile -ErrorAction 'SilentlyContinue'
 }

 }

 PROCESS
 {
 foreach ($name in $computername) { 1&
 GetOSInfo $name $logFile 1*
 }
 }
}

New-Alias goi Get-OSInfo 1(

Export-ModuleMember -function Get-OSInfo
Export-ModuleMember -alias goi 2)

Here’s what’s happening, starting at the top of the script:

1 The GetOSInfo function is doing the real work b. In it, I pass in a single com-

puter name and the log file path c.

Download from Wow! eBook <www.wowebook.com>

280 CHAPTER 25 Final exam: tackling an administrative task from scratch

2 The function sets a $Continue variable d that assumes the first WMI query will
work. That query uses an -ErrorAction of Stop e, so that if an error occurs
the Catch block will execute.

3 The Catch block logs the computer name to a file if a log file was specified f. It
also sets the $Continue variable to $False, so that the second WMI query won’t
execute g.

4 The second WMI query h executes only if the first one succeeded.
5 With both WMI queries complete, I build a custom output object and attach

properties to it i. Notice that the LastBootUpTime property is being converted
to a normal DateTime by using the built-in ConvertToDateTime() method that’s
attached to all WMI objects.

6 Once completed, the custom object is written to the pipeline j.
7 The Get-OSInfo function is the one I want users to actually run, so I provide

comment-based help 1). That help includes detailed examples of how to use
the function 1!.

8 The function uses cmdlet-style parameters 1@, including several parameter attri-
butes for the -computerName parameter 1#, and the alias that will allow the user
to use -host instead of -computerName 1$.

9 The $logFile parameter defaults to an empty string 1%. I used that in the
GetOSInfo function to determine whether or not a log path was actually pro-
vided.

10 In the BEGIN block, I check to see if a log file path was provided 1^. If one was, I
delete any existing file having that name. Because there might not be a file, I
specify the -EA SilentlyContinue parameter to suppress any errors from this
command.

11 It’s possible to provide computer names via the -computerName (or -host)
parameter, or via the pipeline. The names will end up in the right variable any-
way 1&, so all I need to do is manually enumerate those values and call the
GetOSInfo worker function once for each computer name 1*.

12 I define an alias, goi, for the Get-OSInfo function 1(.
13 To hide the GetOSInfo worker function, I manually export both the Get-

OSInfo function and the goi alias 2). That ensures that only those two items
will be visible to someone who imports this module.

To be sure, this is a complex script, but much of the complexity is actually in the struc-
ture, not in the commands. The underlying commands that are doing much of the
work are fairly straightforward. The structure serves to make this more accessible to
less-experienced co-workers and colleagues.
Download from Wow! eBook <www.wowebook.com>

Beyond the operating
system: taking

PowerShell further
I know you’ve seen a lot of Get-Process and Get-Service in this book. There’s a
reason for that: as I explained toward the beginning of the book, I’m guaranteed of
you having access to those cmdlets because they’re built into the base shell.
Although we also used Get-WmiObject, Get-Hotfix, and a few other core cmdlets, I
like Get-Service and Get-Process because they exhibit almost all of the possible
characteristics of a cmdlet. You can use them to master parameters, pipeline
parameter binding, and many other key concepts. Once you’ve done so, using any
other cmdlet is easy: just read its help file to learn about its parameters, and you’re
good to go.

 In this chapter, I want to take a brief look at how you can apply those core skills
to the cmdlets that come with other products. This isn’t intended to be a tutorial on
those products’ cmdlets. Rather, I want this to prove to you that, rather than me giv-
ing you fish to eat, I’ve taught you how to fish. In other words, you’re prepared to go
out and learn additional cmdlets on your own, without much more help from me.

26.1 Everything you’ve learned works the same everywhere
The neat thing about PowerShell is that it forces cmdlet developers into a set of fairly
strict patterns. That’s not to say every cmdlet developer does a good job of sticking
with those patterns, but the nature of PowerShell makes it difficult for them to stray
too far from what Microsoft intended for PowerShell to be. That means every cmdlet
tends to work more or less like every other cmdlet. All you need to do is read the help,
know how to interpret it, and know a few key skills like parenthetical commands and
281

pipeline parameter binding—all of which you’ve learned in this book.

Download from Wow! eBook <www.wowebook.com>

282 CHAPTER 26 Beyond the operating system: taking PowerShell further

 This chapter is going to be a bit different for me to write, and that’s going to make
it a bit different for you to read. I’ve deliberately held off learning any of the Share-
Point Server 2010 cmdlets, and I’ve never even seen the VMware cmdlets. So I’m
going to write this chapter as a kind of stream-of-consciousness narrative, meaning
that I’ll be exploring these cmdlets for the first time, and you’re coming along for the
ride. Let’s see if those core PowerShell skills you’ve learned in the previous two dozen
chapters are sufficient to figure out how these cmdlets work.

26.2 SharePoint Server 2010
The first thing you need to do is to set yourself a task of some kind. I’ve decided that I
want to get a list of every Web in every SharePoint site. I’m not going to be using the
SharePoint-specific PowerShell shortcut; I regard that as cheating because it will pre-
load the SharePoint commands for me. I’m going to start in the basic shell.

 First, I’ll see if I can find a SharePoint module or snap-in:

PS C:\> get-module -listavailable

ModuleType Name ExportedCommands
---------- ---- ----------------
Manifest ActiveDirectory {}
Manifest ADRMS {}
Manifest AppLocker {}
Manifest BestPractices {}
Manifest BitsTransfer {}
Manifest GroupPolicy {}
Manifest PSDiagnostics {}
Manifest ServerManager {}
Manifest TroubleshootingPack {}
Manifest WebAdministration {}

PS C:\> get-pssnapin -registered

Name : Microsoft.SharePoint.PowerShell
PSVersion : 1.0
Description : Register all administration Cmdlets for Microsoft SharePoint
 Server

Name : SqlServerCmdletSnapin100
PSVersion : 2.0
Description : This is a PowerShell snap-in that includes various SQL Serve
 r cmdlets.

Name : SqlServerProviderSnapin100
PSVersion : 2.0
Description : SQL Server Provider

There are no modules, but there’s a snap-in. I can load that:
PS C:\> add-pssnapin microsoft.sharepoint.powershell

Download from Wow! eBook <www.wowebook.com>

283SharePoint Server 2010

And I can get a list of commands:

gcm -pssnapin microsoft.sharepoint.powershell

And the list is huge. I can see that every cmdlet noun starts with “SP,” so let’s see if I
can find something to do with sites:

PS C:\> gcm -name *site*

CommandType Name Definition
----------- ---- ----------
Cmdlet Add-SPSiteSubscriptionFeat... Add-SPSiteSubscriptionFea...
Cmdlet Add-SPSiteSubscriptionProf... Add-SPSiteSubscriptionPro...
Cmdlet Backup-SPSite Backup-SPSite [-Identity]...
Cmdlet Clear-SPSiteSubscriptionBu... Clear-SPSiteSubscriptionB...
Application dssite.msc C:\Windows\system32\dssit...
Cmdlet Export-SPSiteSubscriptionB... Export-SPSiteSubscription...
Cmdlet Export-SPSiteSubscriptionS... Export-SPSiteSubscription...
Cmdlet Get-SPEnterpriseSearchQuer... Get-SPEnterpriseSearchQue...
Cmdlet Get-SPEnterpriseSearchQuer... Get-SPEnterpriseSearchQue...
Cmdlet Get-SPEnterpriseSearchQuer... Get-SPEnterpriseSearchQue...
Cmdlet Get-SPEnterpriseSearchSite... Get-SPEnterpriseSearchSit...
Cmdlet Get-SPSite Get-SPSite [-Limit <Strin...
...

This is still a huge list of commands (I’ve truncated it here) because I wasn’t specific
about them being cmdlets. But I found Get-SPSite. Time to read the help.

PS C:\> help get-spsite -full

I always start with the full help, not the abbreviation, because I also want to review the
parameters and see the examples. I’m seeing some text that concerns me:

... every site collection returned by the Get-SPSite cmdlet is automatically dis-
posed of at the end of the pipeline. To store the results of Get-SPSite in a local
variable, the Start-SPAssignment and Stop-SPAssignment cmdlets must be used
to avoid memory leaks.

Sounds awful, so let’s not do the variable thing unless we have to. It looks like I can
just run Get-SPSite and get a list of sites, so let’s try that:

PS C:\> get-spsite

Url

http://server-r2
http://server-r2/my

Perfect. Now, I want to get the Webs from those sites. I saw in the Get-SPSite help
examples that there’s a cmdlet called Get-SPWeb, so I’ll read its full help. It says I need
to use an -Identity parameter, which can be a full URL or a relative path. It doesn’t
accept pipeline input, though. Its -Site parameter accepts pipeline input; unfortu-

nately the help doesn’t say if it accepts ByValue or ByPropertyName. How annoying.

Download from Wow! eBook <www.wowebook.com>

284 CHAPTER 26 Beyond the operating system: taking PowerShell further

But it does say that the parameter “specifies the URL or GUID of the site collection
from which to list subsites.”

 Well, I know where to get a URL—it was in the output of the previous command I
ran. The -AssignmentCollection parameter also accepts pipeline input, which isn’t
important to me right now, but I’ll make a note of it. Its description talks about things
using large amounts of memory and memory management, so I’ll come back and
read it later.

 Right now, I’ll run this:

PS C:\> get-spsite | get-spweb | gm

 TypeName: Microsoft.SharePoint.SPWeb

Name MemberType Definition
---- ---------- ----------
AddApplicationPrincipal Method Microsoft.SharePoint.S...
AddProperty Method System.Void AddPropert...
AddSupportedUICulture Method System.Void AddSupport...
...

There is more to see, but it’s too long to paste in here. But I now know that I can pipe
Get-SPSite to Get-SPWeb to get the Webs for those sites, and Gm is telling me what
properties are available for me to work with once I’ve got the Webs. I’ll pick out a few
interesting-looking properties and try to view them:

PS C:\> get-spsite | get-spweb | ft Url,Title,IsRootWeb

Url Title IsRootWeb
--- ----- ---------
http://server-r2 Nugget Lab True
http://server-r2/my My Site True

Hopefully by now you’re comfortable with Ft, the alias for Format-Table, so this com-
mand should make sense. There are a ton of methods on the Web objects, too, all of
which can make one of those Webs do something for me. I don’t know if there are
equivalent cmdlets or not, but I can use ForEach-Object to execute methods.

 For example, there’s a Delete() method, so I bet I could run the following com-
mand to get my boss to fire me:

PS C:\>get-spsite | get-spweb | foreach-object { $_.Delete() }

Keep in mind that methods don’t support -confirm or -whatif, and you always have to
have the parentheses after the method name, even if they don’t contain any parameters.

 Browsing the list of other SharePoint-related commands, I can see a lot of capabili-
ties. I should be able to do just about anything. The trick to learning how to accom-
plish any task involves these three steps:

■ Discovering available commands
■ Reading commands’ help to figure out how they work, paying close attention to
pipeline parameter binding options and to usage examples

Download from Wow! eBook <www.wowebook.com>

285VMware vSphere and vCenter

■ Experimenting in a test environment (like a virtual machine) to avoid breaking
anything

Mix in a little Google or Bing searching on the side, and you should be able to figure
out any of it.

26.3 VMware vSphere and vCenter
VMware vSphere, including its vCenter management tool, is a product I’ve never even
used before. I work with several ESXi servers, but I haven’t ever been called upon to do
any automation with VMware. Their PowerShell extensions are based on the same
models as their other scripting toolkits for VBScript and so on, and I’ve heard that
they’re not quite as well-structured as the cmdlets Microsoft has produced for their
products. We’ll see! Again, the goal here isn’t to provide you with a tutorial on these
cmdlets (I’m not sure I’m qualified to do so), but to help you see how I tackle a com-
pletely unknown set of cmdlets and teach myself to do at least a basic task.

 As usual, I start by installing the cmdlets (which are in VMware’s VI Toolkit), and
adding the snap-in into PowerShell. I’m looking to do a simple inventory of VM con-
figuration settings, so I run this command:

PS C:\>Get-Command -verb get -noun *config*

I use config instead of configuration in case the folks who developed these cmdlets
were using abbreviations and shortened word forms.

 One of the cmdlets that pops out at me is Get-VMResourceConfiguration—excel-
lent! I run it with a single virtual machine on my host and see this:

PS C:\> Get-VMResourceConfiguration MyVM

VirtualMachineId : VirtualMachine-vm-3674
NumCpuShares : 1000
CpuReservationMhz :0
CpuLimitMhz : -1
CpuSharesLevel : Normal
NumMemShares : 5120
MemReservationMB : 0
MemLimitMB : -1
MemSharesLevel : Normal
DiskResourceConfiguration : {2000}
HTCoreSharing : Any
CpuAffinity : NoAffinity

That’s exactly what I was looking for. Browsing through the list of cmdlets that have a
noun prepended with “VM,” I also see Invoke-VMScript, which—according to the
help—appears to be a way to inject a script or command directly into a virtual
machine. It requires that PowerShell be installed within each VM, which is fine by me.

 This is an excellent extension to PowerShell’s own remoting, because it lets me tar-
get virtual machines without needing to know their computer names. The command
runs through the VMware Tools link, so I don’t even need to enable regular Power-

Shell remoting.

Download from Wow! eBook <www.wowebook.com>

286 CHAPTER 26 Beyond the operating system: taking PowerShell further

 These are just two quick examples of how easily I was able to discover useful com-
mands, simply by loading the snap-in, exploring the commands that were added, and
reading their help. If you’re interested in a more complete guide to the VMware cmd-
lets, check out Managing VMware Infrastructure with Windows PowerShell: TFM by Hal
Rottenberg (http://www.sapienpress.com/vmware.asp).

26.4 Third-party Active Directory management
I want to wrap up this chapter with a quick note about managing Active Directory. In
this book, I’ve used Microsoft’s AD cmdlets, which ship with Windows Server 2008 R2
and are available in the Remote Server Administration Tools (RSAT) for Windows 7
and later. A lot of experienced PowerShell/AD gurus don’t like the Microsoft cmdlets
for a number of reasons, one of which is their inability to access schema extensions,
Terminal Services attributes, and so forth. I use them because they’re a great example
of how to use pipeline parameter binding (that’s why I used them in chapter 7, for
example). But I readily acknowledge their shortcomings. If you’re a serious AD admin-
istrator, you’ll want to check out Quest Software (http://quest.com/powershell) and
download their free PowerShell Commands for Active Directory. These don’t require
any additional software on your domain controllers (the Microsoft ones do on DCs
prior to Win2008R2), and they’ll even work with Win2000-based domains if you still
have any of those lying around. They also work with Active Directory Lightweight
Directory Services (AD LDS), where the Microsoft cmdlets won’t.

 These Quest cmdlets are well written, although they initially lacked the same rich
pipeline parameter binding of the Microsoft cmdlets. Originally you couldn’t do the
same Import-CSV trick that I did in chapter 7, although you could do something similar.

 For example, assuming you started with a CSV file like this one,

LoginName,Department,City,Title,FirstName,LastName
DonJ,IT,Las Vegas,CIO,Don,Jones
GregS,Janitorial,Denver,Custodian,Greg,Shields
JeffH,IT,Syracuse,Technician,Jeffery,Hicks
ChrisG,Finance,Las Vegas,Accountant,Christopher,Gannon

you could run a command like this:

Import-CSV c:\users.csv | ForEach-Object {

➥ New-QADUser -name $_.LoginName -sAMAccountName $_.LoginName
➥ -department $_.department -city $_.city -title $_.title
➥ -sn $_.lastname -givenname $_.firstname }

It’s a lot more typing, but it gets the job done. Notice that Quest uses an additional
“Q” prefix on the nouns of their cmdlets, nicely distinguishing between Microsoft’s
Get-ADUser and Quest’s Get-QADUser.

 As of v1.0.6 of Quest’s cmdlets, however, parameter binding has been added, so
provided your CSV column names match the parameter names, you could just do this:

Import-CSV users.csv | New-QADUser -import
Download from Wow! eBook <www.wowebook.com>

287Third-party Active Directory management

You have to add that -import parameter to make this work, which is a little inconsis-
tent with the way most cmdlets work, but at least you can do it.

 Of course, in the preceding example CSV file, the column names don’t match
up—so you can still use the technique that I did to attach the right CSV columns to the
parameters. You could also use property renaming, the technique I showed you in
chapter 7.

 This is probably a nice time to point out that, in PowerShell, there are usually
twenty ways to accomplish anything. Right here, I’ve suggested three ways in which
you could use New-QADUser to import new users from a CSV file. Exactly which tech-
nique you choose is constrained a bit by your CSV file having the right column names
or not. You might also, in your searches of the internet, see something like this:

$OuBorn = 'OU=PowerShell,DC=cp2,DC=mosel'
$Freshmen = 'E:\powershell\QAD\bunch4.csv'
import-csv $Freshmen |`
where {new-QADUser -ParentContainer $OuBorn `
-name $_.name -sAMAccountName $_.sAMAccountName}

Let’s break that down a bit:

■ The first two lines define variables, which will be the OU that the new users are
created in, and the location of the CSV file. There’s no reason to put those static
values into a variable when you can specify them as part of the commands, but
using variables doesn’t hurt.

■ The next line imports the CSV file. This line ends in a backtick, which is com-
monly seen but unnecessary. The author’s intent here is to escape the carriage
return, which prevents the shell from executing the line and lets you break a
long line into multiple physical lines. It’s unnecessary because the line already
ends in a pipe character, which tells the shell that you’ve got more to type.

■ Rather than piping the CSV objects to ForEach-Object, this author is piping
them to Where-Object. I find that weird, but you see it a lot out there in the real
world. The net effect is the same, because Where-Object will execute that script
block once for each object piped in, but it’s not what Where-Object is really
intended for. The backtick at the end of the fourth line is necessary if you want
to break the line at that point.

In my experience, Quest’s cmdlets are definitely used in more production environ-
ments than Microsoft’s cmdlets. In the end, you should probably look at both, and use
whichever one makes sense for the task at hand. There’s nothing stopping you from
having both installed on a computer, or even from having both loaded into the shell
at the same time.
Download from Wow! eBook <www.wowebook.com>

Never the end
We’ve come to the end of this book, but it’s hardly the end of your PowerShell
exploration. There’s a lot more in the shell to learn (hmm, perhaps an “Advanced”
book is in order?), and based on what you’ve learned here, you’ll be able to teach
yourself much of it (so much for the book idea, I guess). This short chapter will
help point you in the right directions.

27.1 Ideas for further exploration
There’s a lot more that you can do in PowerShell. We’ve really only scratched the
surface, although you should certainly have learned enough in this book to be very,
very effective. Here are some of the other things you might want to explore:

■ Create your own predefined views. There’s a pretty simple XML format for
doing so, and the Update-FormatData command loads views into the shell
once you’re done.

■ Work with XML-formatted data, using PowerShell’s [xml] type.
■ Access data in a database. This requires you to use a few raw .NET Framework

classes, but there are simple, copy-and-paste patterns you can rely on to get
the job done.

■ Write internationalized scripts that can substitute strings in different lan-
guages. This is especially helpful if you have colleagues in other countries
who don’t speak English as a first language.

■ Access Component Object Model (COM) objects. This provides access to a
wide range of functionality that’s been in Windows since pretty much the
288

beginning.

Download from Wow! eBook <www.wowebook.com>

289“Now that I’m done, where do I start?”

■ Use transactional operations. As I’m writing this, only the registry supports
transactional operations, but they enable you to conduct many operations and
then have them all commit as a single unit.

■ Create a graphical user interface (GUI) from within your script. Tools like
SAPIEN PrimalForms can assist with this, but you can also manually access the
.NET Framework’s Windows Forms and Windows Presentation Foundation
(WPF) technologies to create dialog boxes and other GUI elements.

■ PowerShell includes rich support for regular expressions, which enable you to
describe a text pattern to a computer (like a UNC path or IP address) and have
the computer match that pattern inside text data.

Obviously, all of these are beyond the scope of this book, but you’ll find many of them
covered by the additional resources that I list at the end of this chapter. This list should
also provide you with the keywords to punch into a search engine to get you started.

27.2 “Now that I’m done, where do I start?”
The best thing to do now is to pick a task. Choose something in your production
world that you personally find repetitive, and automate it using the shell. You’ll almost
certainly run across things that you don’t know how to do, and that’s the perfect place
to start learning.

 Here are some of the things I’ve seen other administrators tackle:

■ Write a script that changes the password a service uses to log in, and have it tar-
get multiple computers that are running that service. (Actually, you could do
this in a single command.)

■ Write a script that automates new user provisioning, including creating user
accounts, mailboxes, and home directories. Setting NTFS permissions with
PowerShell is tricky, but consider using a tool like Cacls.exe or Xcacls.exe from
within your PowerShell script, instead of PowerShell’s native (and complex)
Get-ACL and Set-ACL cmdlets.

■ Write a script that manages Exchange mailboxes in some way—perhaps getting
reports on the largest mailboxes, or creating charge-back reports based on mail-
box sizes.

■ Automate the provisioning of new websites in IIS, using the WebAdministration
module included in Windows Server 2008 R2 (which also works against IIS 7 in
Windows Server 2008).

The biggest thing to remember is to not over-think it. I once met an administrator who
struggled for weeks to write a robust file-copying script in PowerShell so that he could
deploy content across a web server farm. “Why not just use Xcopy or Robocopy?” I

asked. He stared at me for a minute, and then laughed. He’d gotten so wrapped up in

Download from Wow! eBook <www.wowebook.com>

290 CHAPTER 27 Never the end

“doing it in PowerShell” that he forgot that PowerShell can use all of the excellent
utilities that are already out there.

27.3 Other resources you’ll grow to love
I spend a lot of time working with, writing about, and teaching PowerShell. Ask my
family—sometimes I barely shut up about it long enough to eat dinner. That means
I’ve accumulated a lot of online resources that I use daily, and that I recommend to all
of my students. Hopefully they’ll provide you with a good starting point, as well.

■ MoreLunches.com—This should be your first stop, if you haven’t already book-
marked the site. There you’ll find free bonus and companion content for this
book, including the lab answers, video demonstrations, bonus articles, and
additional recommended resources. You’ll also be able to download the longer
code listings for this book, so that you don’t have to type them in manually.
Consider bookmarking the site and visiting often to refresh what you’ve learned
in this book.

■ http://WindowsITPro.com/go/DonJonesPowerShell—This is a landing page
for my online Frequently Asked Questions (FAQ) and blog about Windows Pow-
erShell. You’ll also find bimonthly feature articles. The layout of the page
changes from time to time, so if you have trouble finding the blog articles, go
directly to the blog index at http://www.windowsitpro.com/blogs/PowerShell
withaPurpose.aspx. I post a new blog article at least twice weekly, and they’re
always either tutorials, tips, or PowerShell-related product reviews.

■ http://Connect.ConcentratedTech.com—This is a private discussion forum for
past students—and that now includes you. You’ll need to register for an account,
but once you do, you’re welcome to post your PowerShell questions and I’ll do
my best to answer. I also monitor a forum hosted by Manning, http://
www.manning-sandbox.com/forumindex.jspa, if you’d prefer to use that.

■ http://ShellHub.com—This is a website that I maintain. It’s a handpicked list
of other PowerShell-related online resources, including the blogs I read most,
third-party PowerShell tools, and more. Pretty much every URL I’ve ever recom-
mended to someone is listed here. In the event that any other URL I give you
changes, you can hop on ShellHub.com to find an update.

Students often ask if there are any other PowerShell books that I recommend. There
are only a few that I keep right on my desk.

■ One is Windows PowerShell v2.0: TFM, published by SAPIEN Press. I coauthored
this with Jeffery Hicks, so I’m a bit biased, but it covers almost every single thing
an administrator can do with PowerShell, including numerous full-length
examples. The examples can also be downloaded from http://SAPIENPress
.com (navigate to the book’s page and scroll all the way to the bottom). Some of
the content in the book gets pretty advanced, but it’s a great reference.
Download from Wow! eBook <www.wowebook.com>

http://WindowsITPro.com/go/DonJonesPowerShell
http://www.windowsitpro.com/blogs/PowerShellwithaPurpose.aspx
http://www.windowsitpro.com/blogs/PowerShellwithaPurpose.aspx
http://Connect.ConcentratedTech.com
http://ShellHub.com
http://SAPIENPress.com
http://SAPIENPress.com

291Other resources you’ll grow to love

■ I also refer to Windows PowerShell in Action (also published by Manning) a lot.
Written by Bruce Payette, the lead developer for PowerShell, the book isn’t so
much a tutorial (like this one), but more of a brain-dump on how and why the
shell works. You’ll learn a lot, and it’s a good way to understand many of the
gotchas that you run across as you’re learning the shell.

■ Finally, Richard Siddaway’s PowerShell in Practice is a “cookbook” approach to
PowerShell, offering a number of ready-made solutions to common tasks.

Finally, if you’d like some full-length video-based training for PowerShell, visit http://
shellhub.com/training.php for suggestions. Keep in mind, though, that More-
Lunches.com hosts free companion video content for each chapter in this book!
Download from Wow! eBook <www.wowebook.com>

PowerShell cheat sheet
This is my opportunity to assemble a lot of the little gotchas into a single place. If
you’re ever having trouble remembering what something is or does, flip to this
chapter first.

28.1 Punctuation
There’s no doubt that PowerShell is full of punctuation, and much of it has a differ-
ent meaning in the help files than it does in the shell itself. Here’s what it all means
within the shell:

■ ` (backtick)—This is PowerShell’s escape character. It removes the special
meaning of any character that follows it. For example, a space is normally a
separator, which is why cd c:\Program Files generates an error. Escaping
the space, cd c:\Program` Files, removes that special meaning and forces
the space to be treated as a literal, so the command works.

■ ~ (tilde)—When used as part of a path, this represents the current user’s
home directory, as defined in the UserProfile environment variable.

■ () (parentheses)—These are used in a couple of ways:

■ Just as in math, parentheses define an order of execution. PowerShell will
execute parenthetical commands first, from the innermost parentheses to
the outermost. This is a good way to run a command and have its output
feed the parameter of another command: Get-Service -computerName
(Get-Content c:\computernames.txt)

■ Parentheses also enclose the parameters of a method, and they must be included
even if the method doesn’t require any parameters: ChangeStartMode('Auto-
292

matic'), for example, or Delete().

Download from Wow! eBook <www.wowebook.com>

293Punctuation

■ [] (square brackets)—These have two main uses in the shell:

■ They contain the index number when you want to refer to a single object
within an array or collection: $services[2] gets the third object from
$services (indexes are always zero-based).

■ They contain a data type when you’re casting a piece of data as a specific
type. For example, $myresult / 3 -as [int] casts the result as a whole
number (integer), and [xml]$data = Get-Content data.xml will read the
contents of Data.xml and attempt to parse it as a valid XML document.

■ { } (curly braces or curly brackets)—These have three uses:

■ They contain blocks of executable code or commands, called script blocks.
These are often fed to parameters that expect a script block or a filter block:
Get-Service | Where-Object { $_.Status -eq 'Running' }

■ They contain the key-value pairs that make up a new hashtable. The opening
brace is always preceded by an @ sign. Notice that in this example I’m using
braces both to enclose the hashtable key-value pairs (of which there are two)
and to enclose an expression script block, which is the value for the second
key, “e”:
$hashtable = @{l='Label';e={expression}}

■ When a variable name contains spaces, braces must surround the name:
${My Variable}

■ ' ' (single quotation marks)—These contain string values. PowerShell doesn’t look
for the escape character, nor does it look for variables, inside single quotes.

■ " " (double quotation marks)—These contain string values. PowerShell looks for
escape characters and the $ character inside double quotes. Escape characters
are processed, and the characters following a $ symbol (up to the next white
space) are taken as a variable name and the contents of that variable are substi-
tuted. For example, if the variable $one contains the value World, then $two =
"Hello $one `n" will contain Hello World and a carriage return (`n is a car-
riage return).

■ $ (dollar sign)—This character tells the shell that the following characters, up to
the next white space, represent a variable name. This can be tricky when work-
ing with cmdlets that manage variables. Supposing that $one contains the value
two, then New-Variable -name $one -value 'Hello' will create a new variable
named two, with the value Hello, because the dollar sign tells the shell that you
want to use the contents of $one. New-Variable -name one -value 'Hello'
would create a new variable $one.

■ % (percent sign)—This is an alias for the ForEach-Object cmdlet.
■ ? (question mark) —This is an alias for the Where-Object cmdlet.
■ > (right angle bracket)—This is a sort of alias for the Out-File cmdlet. It’s not

technically a true alias, but it does provide for Cmd.exe-style file redirection:

dir > files.txt.

Download from Wow! eBook <www.wowebook.com>

294 CHAPTER 28 PowerShell cheat sheet

■ + - * / (math operators) —These function as standard arithmetic operators.
Note that + is also used for string concatenation.

■ - (dash or hyphen)—This precedes both parameter names and operators,
such as -computerName or -eq. It also separates the verb and noun components
of a cmdlet name, as in Get-Content, and serves as the subtraction arithmetic
operator.

■ @ (at sign)—This has four uses in the shell:

■ It precedes a hashtable’s opening curly brace (see curly braces, above).
■ When used before parentheses, it encloses a comma-separated list of values

that form an array: $array = @(1,2,3,4). But both the @ sign and the paren-
theses are optional, because the shell will normally treat any comma-sepa-
rated list as an array anyway.

■ It denotes a here-string, which is a block of literal string text. A here-string
starts with @" and ends with "@, and the closing mark must be on the begin-
ning of a new line. Run help about_quoting_rules for more information
and examples. Here-strings can also be defined using single quotes.

■ It is PowerShell’s splat operator. If you construct a hashtable where the keys
match parameter names, and those values’ keys are the parameters’ values,
then you can splat the hashtable to a cmdlet. The B# .NET Blog has a “Win-
dows PowerShell 2.0 Feature Focus—Splat, Split and Join” article that pro-
vides a good example of splatting (http://mng.bz/xV7h).

■ & (ampersand)—This is PowerShell’s invocation operator, instructing the shell to
treat something as a command and to run it. For example, $a = "Dir" places
the string "Dir" into the variable $a; & $a will run the Dir command.

■ ; (semicolon)—This is used to separate two independent PowerShell commands
that are included on a single line: Dir ; Get-Process will run Dir and then
Get-Process. The results are sent to a single pipeline, but the results of Dir
aren’t piped to Get-Process.

■ # (pound sign or hash mark)—This is used as a comment character. Any charac-
ters following #, to the next carriage return, are ignored by the shell. The angle
brackets, < and >, are used as part of the tags that define a block comment: Use
<# to start a block comment, and #> to end one. Everything within the block
comment will be ignored by the shell.

■ = (equal sign)—This is the assignment operator, used to assign a value to a vari-
able: $one = 1. It isn’t used for quality comparisons; use -eq instead. Note that
the equal sign can be used in conjunction with a math operator: $var +=5 will
add 5 to whatever is currently in $var.

■ | (pipe)—The pipe is used to convey the output of one cmdlet to the input of
another. The second cmdlet (the one receiving the output) uses pipeline
parameter binding to determine which parameter or parameters will actually

receive the piped-in objects. Chapter 7 has a discussion of this process.

Download from Wow! eBook <www.wowebook.com>

295Help file

■ \ or / (backslash or slash)—A forward slash is used as a division operator in math-
ematical expressions; either the forward slash or backslash can be used as a
path separator in file paths: C:\Windows is the same as C:/Windows. The back-
slash is also used as an escape character in WMI filter criteria and in regular
expressions.

■ . (period)—The period has three main uses:

■ It’s used to indicate that you want to access a member, such as a property or
method, or an object: $_.Status will access the Status property of whatever
object is in the $_ placeholder.

■ It’s used to dot source a script, meaning that the script will be run within the
current scope, and anything defined by that script will remain defined after
the script completes, for example, c:\myscript.ps1.

■ Two dots (..) form the range operator, which is discussed later in this chap-
ter. You will also see two dots used to refer to the parent folder in the file-
system, such as in the path ..\.

■ , (comma)—Outside of quotation marks, the comma separates the items in a list
or array: "One",2,"Three",4. It can be used to pass multiple static values to
a parameter that can accept them: Get-Process -computername Server1,

Server2,Server3.
■ : (colon)—The colon (technically, two colons) is used to access static members

of a class; this gets into .NET Framework programming concepts. [date-
time]::now is an example (although you could achieve that same task by run-
ning Get-Date).

■ ! (exclamation point)—This is an alias for the -not Boolean operator.

I think the only piece of punctuation on a U.S. keyboard that PowerShell doesn’t
actively use for something is the caret (^), although those do get used in regular
expressions.

28.2 Help file
Punctuation within the help file takes on slightly different meanings:

■ []—Square brackets that surround any text are indicating that the text is
optional. That might include an entire command ([-Name <string>]), or it
might indicate that a parameter is positional and that the name is optional
([-Name] <string>). It can also indicate both: that a parameter is optional,
and if used, can be used positionally ([[-Name] <string>]). It’s always legal to
use the parameter name, if you’re in any doubt.

■ []—Adjacent square brackets indicate that a parameter can accept multiple
values (<string[]> instead of <string>).

■ < >—Angle brackets surround data types, indicating what kind of value or object
a parameter expects: <string>, <int>, <process>, and so forth.
Download from Wow! eBook <www.wowebook.com>

296 CHAPTER 28 PowerShell cheat sheet

Always take the time to read the full help (add -full to the help command), because
it provides maximum detail as well as, in most cases, usage examples.

28.3 Operators
PowerShell doesn’t use the traditional comparison operators found in most program-
ming languages. Instead, it uses these:

■ -eq—Equality (-ceq for case-sensitive string comparisons)
■ -ne—Inequality (-cne for case-sensitive string comparisons)
■ -ge—Greater than or equal to (-cge for case-sensitive string comparisons)
■ -le—Less than or equal to (-cle for case-sensitive string comparisons)
■ -gt—Greater than (-cgt for case-sensitive string comparisons)
■ -lt—Less than (-clt for case-sensitive string comparisons)
■ -contains—Returns True if the specified collection contains the object speci-

fied ($collection -contains $object); -notcontains is the reverse.

There are logical operators used to combine multiple comparisons:

■ -not—Reverses True and False (the ! symbol is an alias for this operator).
■ -and—Both subexpressions must be True for the entire expression to be True.
■ -or—Either subexpression can be True for the entire expression to be True.

In addition, there are operators that perform specific functions:

■ -join—Joins the elements of an array into a delimited string
■ -split—Splits a delimited string into an array
■ -replace—Replaces occurrences of one string with another
■ -is—Returns True if an item is of the specified type ($one -is [int])
■ -as—Casts the item as the specified type ($one -as [int])
■ ..—A range operator; 1..10 returns ten objects, 1 through 10
■ -f—The format operator, replacing placeholders with values: "{0}, {1}" -f

"Hello","World"

28.4 Custom property and column syntax
In chapters 7 and 8, I showed you how to define custom properties using Select-
Object, or custom columns and list entries using Format-Table and Format-List
respectively. Here’s that hashtable syntax.

 You do this for each custom property or column:

@{label='Column_or_Property_Name';expression={Value_expression}}

Both of the keys, Label and Expression, can be abbreviated as l and e respectively
(be sure to type a lowercase “L” and not the number 1; you could also use n for
“Name,” in place of the lowercase “L”).
@{l='Column_or_Property_Name';e={Value_expression}}

Download from Wow! eBook <www.wowebook.com>

297Pipeline parameter input

Within the expression, the $_ placeholder can be used to refer to the current object
(such as the current table row, or the object to which you’re adding a custom property):

@{l='ComputerName';e={$_.Name}}

28.5 Pipeline parameter input
Pipeline parameter binding was discussed in chapter 7, where you learned that there
are two types of parameter binding: ByValue and ByPropertyName. ByValue occurs
first, and ByPropertyName only occurs if ByValue didn’t work.

 For ByValue, the shell looks at the type of the object that was piped in. You can dis-
cover that type name by piping the object to Gm yourself. The shell then looks to see if
any of the cmdlet’s parameters accept that type of input and are configured to accept
pipeline input ByValue. It’s not possible for a cmdlet to have two parameters binding
the same data type in this fashion. In other words, you shouldn’t see a cmdlet that has
two parameters, each of which accepts <string> input, both of which accept pipeline
input ByValue.

 If ByValue doesn’t work, the shell switches to ByPropertyName. Here, it simply
looks at the properties of the piped-in object and attempts to find parameters with the
exact same names that can accept pipeline input ByPropertyName. So if the piped-in
object has properties Name, Status, and ID, the shell will look to see if the cmdlet has
parameters named Name, Status, and ID. Those parameters must also be tagged as
accepting pipeline input ByPropertyName, which you can see when reading the full
help (add -full to the help command).

 Figure 28.1 illustrates this process.

Figure 28.1 This chart will help

Import-CSV c:\users.csv | New-ADUser
you keep track of the pipeline
parameter-binding process.

Download from Wow! eBook <www.wowebook.com>

298 CHAPTER 28 PowerShell cheat sheet

28.6 When to use $_
This is probably one of the most confusing things about the shell: when is the $_
placeholder permitted?

 This placeholder only works when the shell is explicitly looking for it and is pre-
pared to fill it in with something. Generally speaking, that only happens within a script
block that’s dealing with pipeline input, in which case the $_ placeholder will contain
one pipeline input object at a time. You’ll run across this in a few different places:

■ In the filtering script block used by Where-Object:

Get-Service | Where-Object {$_.Status -eq 'Running' }

■ In the script blocks passed to ForEach-Object, such as the main Process script
block typically used with the cmdlet:

Get-WmiObject -class Win32_Service -filter "name='mssqlserver'" |
 ForEach-Object -process { $_.ChangeStartMode('Automatic') }

■ In the Process script block of a filtering function or an advanced function.
Refer to chapter 20 for more information about this.

■ In the expression of a hashtable that’s being used to create a custom property
or table column. Refer to the “Custom property and column syntax” section in
this chapter for more details, or read chapters 7 and 8 for a more complete dis-
cussion.

In every one of those cases, $_ occurs only within the curly braces of a script block.
That’s a good rule to remember for figuring out when it’s okay to use $_.
Download from Wow! eBook <www.wowebook.com>

index
Symbols

@ (at sign) 294
& (invocation operator) 17
% (alias of ForEach-Object) 151
$ (dollar sign) 170
$_ placeholder 82, 103, 105,

152, 226, 234
copying to variable 230
in ForEach-Object 298
in hashtables 298
in PROCESS script blocks 298
in Where-Object 298

$ConfirmPreference
variable 45, 238

$DebugPreference 189, 258,
261

$error collection 249
$ErrorActionPreference

variable 189, 243
$False (Boolean value) 101
$home variable 267
$null variable 151
$PSBoundParameters variable

232
$PSCmdlet object 238
$pshome variable 86, 267
$True (Boolean value) 101

A

abbreviating
memory and disk size 93

aborting
commands 29
jobs 140

about topics 33–34
access denied message 256
accessing elements by index

number 175
accuracy in typing 70
ACLs (getting and setting) 289
Active Directory

creating users 78
managing 286

Active Directory Lightweight
Directory Services (AD
LDS) 286

Active Directory Modules for
Windows PowerShell 49

Active Directory Services Inter-
face (ADSI) 179

ActiveDirectory module 78, 208
AD LDS (Active Directory Light-

weight Directory
Services) 286

ADComputer object 83
Add-Member 218
Add-PSSnapin 50
Add-WindowsFeature 57
AddDays method 273
administrator 10
ADSI (Active Directory Services

Interface alias) 179
advanced functions in Power-

Shell’s documentation 236
alert character 174
aliases

AliasProperty property 65
alternate pipelines 258
ambiguous parameter names 28
ampersand operator 294
angle brackets 31, 293, 295
answers, lab 7
anti-malware software 160
anticipating errors 242
AntiVirusProduct WMI class 121
-ArgumentList parameter of

Invoke-WmiMethod 151
arrays

accessing elements 293
count property 175
from comma-separated

lists 174, 270, 294–295
joining 270
splitting 270

-as operator 93
-AsJob parameter of Get-

WmiObject 135
at sign (@) 294
attributes of parameters 30
Authenticode 164
author, blog of 7, 50, 290
automation 144

B

background color 186
background commands 132
background jobs 132
-backgroundColor command-
299

parameter names 28
script parameter names 195

introduction to 18
scope 201–202

line parameter 186
backslash (\) 295

Download from Wow! eBook <www.wowebook.com>

INDEX300

backtick (`) 173, 292
baselines (configuration) 42
batch cmdlets 145
batch files 10, 191
BEGIN block 230
block comments 197, 294
block string 294
blog, of author 7, 50, 290
books recommended 290
Boolean values 101
brackets

angle 293, 295
curly 221, 293
square 293, 295

branching 220
Break 224
break keyword 246
breakpoints feature 261–263

adding 262
definition 262
in PowerShell ISE 263
in third-party editors 261
removing 263
suspend mode 262
types of 262
variable watching 262

bypassing security
permissions 159

ByPropertyName 77–78, 237
ByValue 72–76, 237

C

CA (Certificate Authority)
162–164

CACLS tool 289
calculated columns 92
cancelling jobs 140
carriage return escape

character 174
Cascading Style Sheets (CSS) 44
case of property names 218
casting 93, 269
Catch portion, of construct 248
certificated (class 3) 163
certificates

Authenticode 164
code-signing 163
cost 167

Certification Authority (CA)
162–164

Change method (Win32_Service

character encoding for file
output 43

child jobs 134, 139
child scope 201
ChildJobs property 137
-class parameter of Get-

WmiObject 125
Clear-Variable command 180
CliXML format 40
Cmd.exe 12
CmdletBinding() directive 237
cmdlets

binding 236
functions that work like 228
introduction to 16
names 21
names of 18, 294

code signing 163
collections 145

accessing elements 293
accessing members 175
count property 175
defined 62
from comma-separated

list 174
colon (:) 295
colors 268–269
column headings in CSV files 39
columns 91–92
COM objects (Component

Object Model) 288
comma (,) 295
comma-separated lists 32, 174,

294–295
command lines 12, 103
commands

asynchronous execution 133
avoiding retyping 192
confirming operations 45
different behavior in hosting

applications 182
Discovering 25–26
discovering unknown 285
execution of vs. scripts 166
external, support for 16–17
finding import/export

commands 40
finding with Get-

Command 27
impact level 45
import remote 209
name conflicts 54
naming 294

one pipeline each 198
parenthetical 292
piping to Export-CSV 39
prefix on noun 54
prompting for multiple

values 33
redirecting output 43
remote and local

differences 115
repeating 192
running against sets of

computers 32
running vs. scripts 198
separating on a line 97, 294
synchronous execution 132
tab completion 26
testing operation of 46
typing multiple on one

line 97
using parentheses around 32
why output is incomplete 61

comment-based help 196–197
comments

block 197, 294
in CSV files 39
one line 197

commercial CA 163
common parameters 27, 33,

244, 250
Compare-Object 40–42
comparison operators 100
comparisons 100–102
Component Object Model

(COM) 288
computer names

conflict of 54
from Active Directory 114
from files 114
in WMI 127
lists 113

computer objects 83
ComputerName property 205
Concentrated Technology 290
configuration baselines 42
-confirm parameter 45, 237
ConfirmImpact declaration 238
Consolas font 173
console files 58
console host 182
consoles 49
constructs 221–222
ContainsKey method of
WMI class) 150
char object type 179

native 17–20
nesting 113

PSBoundParameters
variable 232

Download from Wow! eBook <www.wowebook.com>

INDEX 301

continue (keyword) 245
Continue value 188, 243, 258
ConvertFromDateTime

method 274
converting

data types 93, 269
errors to terminating 244
to CSV 44
to HTML 44
to XML 44
vs. exporting 44

ConvertTo 44
ConvertTo-HTML 44
ConvertToDateTime

method 274
Copy-Item 18
corruption (WMI) 122
Create Active Directory 78
credentials

and jobs 133
and WMI queries 125
in packaged scripts 159
remoting 111

cryptography 164
CSS (Cascading Style Sheet) 44
CSV files

comparing 40
exporting to 39
first line comment 39
importing from 40
importing into Excel 38
renaming columns 81
second line column

headings 39
Ctrl-C

aborting commands 29
aborting multiple-value

prompt 33
stopping Help 25

curly braces 221, 293
customizing

columns and list entries 91
job name 133
properties 81–82, 296

D

dash (-) 294
databases, accessing 288
Date object 272–274
DateTime parameters 31
debugging

prerequisites 256
trace code 257

declarative pipeline input 235
Default block in Switch 224
default formatting 86–89
default parameter values 214
DefaultDisplayPropertySet 88
defining custom functions 265
descending sort 67
DESCRIPTION keyword 197
deserialized 108, 137, 209
DHCP enabling 147
dialog box 183–184
Diff (CompareObject) 40
digital signatures 163
discarding output 185
discoverability features 19
distributed jobs 136
division 93
DNS Server, installing 5
Do loop 221
documentations 196
dollar sign ($) 170, 293
domain controller, installing 5
dot (.) 82, 295
dot sourcing 295
double quotation marks 172,

258, 293
double type 179
double-clicking scripts 166
drives, mapping 15
duplication 177

E

-EA (-ErrorAction) parameter
244

editors 254
elevated privilege 11
Else block 222
ElseIf block 222
Enable-PSRemoting 109
EnableDHCP method 148
END block 230
Enter-PSSession command 111,

205–206
entering scripts (in ISE) 214
enumerating 145, 150, 225–226,

232
equal sign (=) 294
error message 243
-ErrorAction (-EA) parameter

244
errors

converting to terminating 244
guidelines for resolving 263
logic (preventing) 179
messages 243
nonterminating 243
overriding behavior for one

cmdlet 244
producing 189
suppressing 243
terminating 243
trappable 243
trapping and handling 247
vs. exceptions 243

-ErrorVariable (-EV)
parameter 249

escape character 173, 258, 292,
295

add special meaning 174
alert 174
for line continuation 194
newline 174
remove special meaning 174
tab 174

escaping 127
ESXi server 285
-EV (-ErrorVariable) parameter

249
events 66
-example parameter of Help 33
exclamation point (!) (-not

operator) 295
executing methods 148
execution policy 59, 160, 267

AllSigned setting 162
and remoting 112
and signed scripts 163
Bypass setting 162
default 160
error messages 160
Microsoft recommenda-

tion 163
RemoteSigned setting 162
Restricted setting 160–161
Unrestricted setting 162
viewing 160
ways of setting 160

Exit-PSSession command 112
exploring WMI 123–125
Export commands 40
Export verb 44
Export-CliXML 40
Export-Console 58
identifying expectations 256
output 189

accessing last 249
anticipated 242

Export-CSV 38
Export-ModuleMember 240

Download from Wow! eBook <www.wowebook.com>

INDEX302

exporting
to CSV 39
vs. converting 44

Extensible Type System 88
extensions

example of using module 55
help for 54
modules 52
prefix on command nouns 54
preloading 58, 265
removing 54
ServerManager module 55
snap-ins 50
types 50
usage examples 59

external commands 16–17

F

-f operator 213
F1 90
failed jobs 141
False (Boolean value) 101
file inclusion 295
File not found error 256
file output 43
file paths 138, 295
filename association of script

files 166
-FilePath parameter of Start-

Job 134
files, commands for

managing 12–13
-filter parameter 99, 126
filtering 99

differences in WMI 130
early 99
filter left 100
-filter parameter 99
from Write-Output 188
generic 100
in WMI queries 125
late 100
with Get-WmiObject 102

filtering function 229
Finally block 248
folders, commands for

managing 12–13
For loop 225
foreach alias 226
ForEach loop 225–226, 234, 237
ForEach-Object 151, 157, 176,

226

-Process parameter 152
specify script block with

-Process 152
using Where-Object

instead 287
vs. ForEach construct 226
vs. Invoke-WmiMethod 153

foreground color
parameter 186

Format-Custom 97
Format-List 90
Format-Table 89–90
Format-Table grouping output

89
Format-Wide (Fw) 91
.format.ps1xml file 86
formatting

at end of command only 95
choosing list or table 88
custom 97
custom columns and list

entries 91
default 86–89
DefaultDisplayPropertySet 88
directing output 93
incompatible with Out-

GridView 94
instruction objects 87
lists 90
making custom views 288
multiple object types 96–97
predefined views 87
rules for defaults 87
single object type 96
strings 213
table view definition 87
tables 89
wide (Format-Wide) 91
with no predefined view 88
XML configuration file 86

FUNCTION drive 239
functions

advanced in PowerShell’s
documentation 236

breaking into pieces 232
cmdlet-style parameters 237
declaring pipeline input 235
defining at startup 265
executing in the pipeline 230
filtering 229
multi-valued parameters 234
multiple parameters 215
naming 214

pipeline 229
private 240
public 232, 240
returning values 215
scope 201, 234
script blocks within 230
using parameters 214
worker 232
wrap it in a function declara-

tion 213
Fw (Format-Wide) 91

G

GB shortcut 93
Gc (Get-Content) 18, 32, 271
Gcm (Get-Command) 27, 51,

53, 56
Get-ACL tool 289
Get-Alias 254
Get-ChildItem 18
Get-Command (Gcm) 27, 51,

53, 56
Get-Content (Gc) 18, 32, 271
Get-EventLog command 37
Get-ExecutionPolicy 160
Get-Help 24
Get-Job 136
Get-Member command

(Gm) 64
example output 64
object output 69
vs. Help system 70
when to use 64

Get-Module 53, 55
Get-Process (Ps) 37
Get-PSDrive 15
Get-PSProvider 51
Get-PSSession 204, 206
Get-PSSnapin 50
Get-QADUser 286
Get-Service (Gsv) 37
Get-SPSite 283
Get-SPWeb 283
Get-Variable 180
Get-VMResourceConfiguration

285
Get-WindowsFeature 56
Get-WmiObject 125–128, 134

-AsJob parameter 135
-class parameter 125
-filter parameter 126
filtering 102
foreach alias 226
percent sign alias 293

object output 216
parameterizing 214

-list parameter 125
-namespace parameter 125

Download from Wow! eBook <www.wowebook.com>

INDEX 303

global scope 201
globalized scripts 288
Gm. See Get-Member command
gotchas 292
graphical input box 184
graphical output 43
grid view output 43
Group Policy

and ExecutionPolicy 160
configuration of remoting 110

Gsv (Get-Service) 37
GUI (creating) 289

H

hash mark sign (#) 294
hashtable 82, 91, 293–294, 296
HasMoreData column of

jobs 139
Help display

paginated 25
help system 23, 29

About topics 33
adding documentation to

scripts 196
and WMI 129–130
angle brackets 31
comment-based 196
common parameters 27
difference from Get-Help 25
-example parameter 33
examples 33
finding parameter attributes

30
for snap-ins and modules 54
for third-party extensions 54
-full parameter 30
goals 25
in Windows Help file 34
interpreting 27–33, 295–296
-Name parameter 25
on iOS devices 34
online help 34
-online parameter 34
parameter sets 27–28
searching 25
square brackets 28, 32
switch parameters 30
third-party tools for viewing 34
using broad terms to search 26
using full view 30
vs. Get-Member 70
wildcards 25

hierarchical storage manage-
ment 14

host output 43
hosting applications 182, 267
hosts 182
HTML reports 44
HTTP 108
HTTPS 108
hyphen (-) 294

I

If construct 221–223
IIS (Internet Information

Services) 289
impact level 45
implicit remoting 208–209
Import commands 40
import commands from remote

session 209
Import-CliXML 40
Import-CSV 40, 79
Import-Module 53, 56
Import-PSSession 209
in keyword, of ForEach

construct 225
IndexOf method 272
InputBox method 186
Inquire value 243
int 31, 93, 179
internationalized scripts 288
Internet Information Services

(IIS) 289
invocation operator (&) 17, 294
Invoke-Command 113, 135, 207
Invoke-SqlCmd 51
Invoke-VMScript 285
Invoke-WmiMethod 148

-ArgumentList parameter 151
error messages 150–151
output 148
vs. ForEach-Object 153

Ipconfig command line utility 16
ISE 182

breakpoints 263
entering scripts 214
for script editing 192
formatting commands 192
running scripts 192, 214
running selection 192
saving scripts 192
script pane 192
three-pane layout 192

J

jobs 132
accessing remote

computers 134
alternate credentials 133
and error messages 133
and remoting capabilities 135
assigning Id 134
checking status 136
child jobs 134, 139
ChildJobs property 137
context 138
display of results 133
distributed 136
extensibility 133
failed 141
file path assumptions 138
getting results 137
HasMoreData column 139
keeping job results 137
local 133
location column 135
memory usage 138
naming 133
parent and child job

results 137
piping results 138
prompting for required

parameters 133
removing 140
requirements for

remoting 135
responding to input

requests 133
script files 134
started by other users 143
starting on remote

computers 143
status of 136
stopping 140
system requirements 134
testing 133
using WMI 134
Wait-Job command 141

Join method 272
joining strings 270

K

KB shortcut 93
Kerberos 111
WMI 129–130
here-string 294

tips for testing commands 192
window panes 11

keys 164
Kill method 66

Download from Wow! eBook <www.wowebook.com>

INDEX304

L

lab environment 5
LastBootUpTime 274
Length property 188
line continuation 287
Lists 90–91
literal strings 172
LoadWithPartialName method

185
localized scripts 288
Location column of job 135
logic errors 179, 255

M

Man keyword (Manual) 24
management shells (product-

specific) 49
mandatory parameters 29, 228
Manual (Man) keyword 24
mass management 144

batch cmdlets 145
enumeration 151
no suitable cmdlet 150
PowerShell approach 146
using WMI 146
VBScript approach 144

math 93, 177
math operators 294
MB shortcut 93
memory leaks 283
memory usage of jobs 138
methods 62, 66

accessing static members 295
AddDays 273
ConvertFromDateTime 274
ConvertToDateTime 274
date conversion 274
documentation 156
IndexOf 272
input arguments 66
invoking on multiple objects

175
of DateTime object 272
of deserialized objects 108
of String object 271
of WMI objects 122, 146
parentheses 175
to manipulate dates and

times 272
to manipulate strings 271
ToLower 272

used in VBScript 145
viewing with Get-Member 156
vs. cmdlets 66
WMI documentation 129

Microsoft Active Directory
cmdlets 286

Microsoft Management Console
(MMC) 48

Microsoft.VisualBasic 184
Microsoft.VisualBasic.Inter-

action 185
MMC (Microsoft Management

Console) 48
modularizing 212–213
modules 52–54

example of using 55
finding commands added

by 53
finding path from Start menu

shortcut 53
help for 54
installing 53
limitations of Get-Module 53
listing available 52
loading 52–53
personal 52
predefined path 52
preloading 49, 58, 265
removing 54
script 238
ServerManager 55
system 52
temporary 209
usage examples 59

More command 37
MoreLunches.com 7, 167, 290
Move (Move-Item) 18
Move-Item (Move) 18
MSDN Web site (Microsoft) 129
multi-valued parameters 234
multiple objects 144, 175
multiple parameters 195
multiple-value parameters 32
multiplication 93, 177
multitasking 132
mutually exclusive parameters

28

N

n (newline character) 174
-Name parameter of Help 25
namespaces (WMI) 121, 125
.NET Framework

New-ADUser 79
New-Alias 202, 240
New-Item 18
New-Object 218
New-PSDrive command 15
New-PSSession 204
New-Variable command 180
newline character (n) 174
nonterminating errors 243
-not operator (exclamation

point) 295
Notepad

creating files from within
PowerShell 79

finding text in 86
NoteProperty property 65,

217–218
Nslookup command-line utility

16
Null 151
numeric parameters 31

O

objects
accessing in arrays or

collections 293
accessing properties and

methods 295
actions 62
blank (PSObject) 217
collections 62, 145
columns, viewing 62
compared to text output

63–64
custom 217
data structures 62
definition 61–62
displaying as text 69
ease of use 63
events 66
from WMI 120
in pipeline 68
members 65
methods 62, 66
properties 62, 64
PSObject 69
similarity to tables 61
simple values 170
sorting 66
static members 295
strings 271
types of properties 65
use in PowerShell 62
ToUpper 272
Trim 272

loading assemblies 184
Net Use example 16

vs. values 170
one-line comment 197

Download from Wow! eBook <www.wowebook.com>

INDEX 305

online help 34
-online parameter 34
open session 204
operators 296

alternates 102
-and 101
-as 93, 269
assignment 170, 294
Boolean 101
case sensitivity 100–101
comparison 100
division 295
equality 101, 294
format 213
greater than 101
inequality 101
invocation 294
-is 270
-join 270
less than 101
-like 101
-match 102
math 294
member resolution 295
-not 101
not alias 295
-or 101
range 295
regular expression 102
-replace 270
shortcut 294
splat 294
-split 270
used with Get-WmiObject 102
wildcard 101
WMI comparison 127

Option Explicit from VBScript
180

Out cmdlets
consumption of formatting

instructions 95
displaying normal objects 87
triggering formatting 88
using formatting instructions

87
Out-Default 43
Out-File 43, 93, 293
Out-GridView 43, 94
Out-Host 43, 93
Out-Null 44, 185
Out-Printer 43, 93
Out-String 44
output

appending to file 13

colors 186
combining from multiple

sources 212
converted data to files 44
discarding 185
displaying in host 182
displaying on screen 186
file 43
file width 43
finding Out cmdlets 43
flexibility of objects 218
from action cmdlets 146
graphical 43
grid view 43
host 43
HTML 44
locations 189
objects vs. text 216
of functions 215
of Invoke-WmiMethod 148
printer 43
redirection 43
screen 43
suppressing 189
writing to pipeline 187

P

packaging scripts 159
Param block 195, 214, 230
parameter attributes 30
parameter binding 73
parameter sets

how work 28
shared parameters 27
Stop-Service 73
unique parameters 27

parameters
abbreviating 28, 195, 255
aborting multiple-value

prompt 33
accepting pipeline input

ByValue 74
comma-separated lists as

input 32
common value types 31
creating from variables 195
declaring in functions 214
declaring multi-valued 234
default values 195, 214
-ErrorAction (-EA) 244
-ErrorVariable (-EV) 250
for script input 195
mandatory 228

names convention 18, 21
naming 294
of functions 214
optional 28
parenthetical expression

input 32, 76
positional 29
prompting for 29, 33, 215, 228
providing multiple values 32
separating 195
specifying for a script 195
switches 30
text file as input 32
typing properly 255
using 30
using in scripts 30
values from comma-separated

lists 295
variables as values 194

parent scope 201
parentheses 32, 292

and methods 148
in comparisons 101
with constructs 221

parenthetical expressions 292
-passThru parameter 146
path separator 295
__PATH WMI property 127
PB shortcut 93
percent sign 293
period 82, 295
Perl language 63
permissions 289
persistent connection 203
persisting snapshots of informa-

tion 40
Ping command-line utility 16
pipe character 294
pipeline

alternates 258
different objects 70
end of 68
example with sessions 206
importance of 72
input 73–74
input ByPropertyName

77–78, 297
input ByValue 72–76, 297
More command 37
objects 68
parameter binding 297
purpose of 37
similarity to Unix 37
usage example 68
case of property names 218
character encoding 43

multiple 195, 215
multiple values 32

vs. scripting 72
writing to 187

Download from Wow! eBook <www.wowebook.com>

INDEX306

pipeline function 229
piping 148, 294
PKI (Public Key Infrastructure)

163
placeholder ($_) 82, 103, 105,

152, 226, 230, 234, 298
positional parameters 29–30
pound sign (#) 294
PowerGUI editor 254
PowerShell

as approach to mass
management 146

commands vs. scripting 9
consistency in 19
customizing 265
opening 10–11
running as Administrator 10
typing accuracy 13

PowerShell (for Active
Directory) 49

PowerShell (for Exchange) 49
PowerShell installation

folder 86
PowerShell ISE 182
PowerShell Plus editor 254
PowerShell script extension

(.PS1) 10
powershell.exe 49
preference variables

Confirm 238
Continue 188
Debug 258
$DebugPreference 189
ErrorAction 243
$ErrorActionPreference 189
possible settings 243
SilentlyContinue 189
$VerbosePreference 189
$WarningPreference 189

preferences 45
prefixes 209
preloading

extensions 58
modules 49, 265

PrimalForms tool 289
PrimalScript editor 254
printer output 43
private key 164
private scope 201
PROCESS block 230
-Process parameter of ForEach-

Object 152
processes, terminating 45, 66

profile scripts 58
profiles 58, 265–267

and ExecutionPolicy 267
and remoting 111
default 266
editing and creating 59
for multiple hosts 266
loading by third-party

hosts 267
loading extensions 59
locations 59, 266

progress bar 189
prompt 183, 267–268
prompting for parameters 29,

215, 228
properties 62

assumptions about
contents 256

case of names 218
choosing 67
custom 81–82, 296
determining table or list 88
different types 65
expanding values of 114
extracting values from 82–83
non-matching column

headers 86
NoteProperty 217
of DateTimes 273
of WMI objects 120, 122
read-only 65
selecting 67
WMI documentation 129
WMI system 127

Property 65
provider, PSDrive 14
Ps (Get-Process) 37
.PS1 extension (PowerShell

script) 10
ps1 filename association 166
PSBreakpoint 261
PSComputerName

property 116, 138
PSDrive 14–16
PSModulePath environment

variable 52, 239
PSObject 69, 217
PSSession 203
PSSnapin. See snap-ins
public functions 232, 240
public key 164
Public Key Infrastructure

Q

Querying WMI 125
Quest cmdlets for Active

Directory 286
question mark (?) Where-

Object 293
-quiet parameter of Test-

Connection 260
quotation marks

and comma-separated
lists 174

double 172, 258, 293
single 172, 293

R

range operator (..) 295
Read-Host 183
reboot computer 122
rebuilding WMI repository 122
Receive-Job 137
redirecting

command output to file 13
output 43

regular expressions 102, 224,
289, 295

relative/absolute path (.) 166
Remote Desktop

Connection 111
Remote Desktop Services 286
remote jobs 135
remote scripts 162
Remote Server Administration

Toolkit (RSAT) 78, 114,
286

Remote Shell 110–111
remoting

1-to-1 (1:1) 111–112
1-to-many (1:n) 112–115
ad-hoc 117
allowing 117
alternate defaults 110
and UAC (User Account

Control) 118
auditing connections 118
cautions 112
computer names 113–114
concurrent users 110
credentials 111, 118
deserialization 108
differences from local

commands 115

product-specific management

shells 49
(PKI) 163

punctuation 255, 292–295
differences from local

shell 111

Download from Wow! eBook <www.wowebook.com>

INDEX 307

remoting (continued)
disconnecting 112
domain membership 108
enabling 109
execution policy 112
firewalls 109, 118
for non-domain

computers 108
functional description 107
Group Policy 109–110, 118
implicit 208
in WMI 127
inconveniences of 203
local vs. remote processing 116
multiple computers 112
names vs. IP addresses 118
permissions 109
persistent connections 117,

203
ports 110
profiles 111
purpose 107
requirements 108
resource limits 110
script files 113
security 111, 118
sending WMI commands 207
serialization 108
shell prompt 111
similarity to Remote Desktop

111
throttling 113
vs. -computerName 115–116
with VMware 285

Remove-Item 18
Remove-Job 140
Remove-Module 54
Remove-PSBreakpoint 263
Remove-PSSession 204
Remove-PSSnapin 54
Remove-Variable 180
Rename-Item 18
renaming CSV columns 81
repetition 221
Replace method 175, 272
replacement of variables in

quotes 173
replacing strings 270
repository (WMI) 122
Responding property of

Process 223
responsibilities of hosting

applications 182

ReturnValue of WMI
methods 149

reusable tools 228
rootCIMv2 WMI namespace 121
rootSecurityCenter WMI

namespace 121
rounding 93
RPC server not found 256
RSAT 78, 114, 286
running scripts 166, 192, 214

S

schema extensions 286
scope 201, 246
screen output 43
script block 152, 293
script cmdlet 236
script editors 164, 192
script modules 238–240
script packaging 159
script scope 201
-scriptblock parameter of Start-

Job 133
scripting 220, 226
ScriptProperty kind of proper-

ties 65
scripts

abbreviated parameter
names 195

adding help 196
best practices 192
changing values 194
creating in Notepad 191
default parameter values 195
definition 191
double-clicking 166
easier reading 192
editing 167
enabling execution 59
entering in ISE 214
execution of vs. commands

166
execution security 160
filename association 166
for repeating commands 192
formatting commands 192
identifying changeable

elements 194
in PowerShell ISE 192
multiple parameters 195
naming 193
one pipeline 200
packaging 159

profile 265–267
running 166, 192, 198, 214
sharing 193
signing 163–164
specifying parameters 195
third-party editors 192
to avoid retyping 192
using . path 166
walking through 257

search engines 124
Searching Help 25
secure by default 159
security

additional permissions in
PowerShell 159

and remoting 118
bypassing permissions 159
execution policy 59, 160
goals in PowerShell 159
malware 160
no additional permissions 167
packaged scripts 159
recommendations 167
remote scripts 162
script execution 160
signed scripts 163
social engineering 167

Security Buddy 158
security issues in VBScript 158
Select-Object 67

alias 293
creation of custom objects 68
custom properties 81
-expandProperty

parameter 83
selecting all properties 81
wildcard 81

semicolon (;) 97, 294
serialization 108
__SERVER WMI property 127
ServerManager module 55
services 45
-session parameter of Enter-

PSSession 206
sessions 203

1-to-1 205
closing 204
ComputerName property 205
create 204
list open 204
properties of 205
resources used 203
retrieving one 206
storing in variable 204
Restart-Computer cmdlet 122
return (keyword) 215

parameterizing 195
path required 166

using localhost 204
using multiple 207

Download from Wow! eBook <www.wowebook.com>

INDEX308

Set-ACL 289
Set-AuthenticodeSignature 164
Set-ExecutionPolicy 59, 160
Set-Location 18
Set-PSBreakpoint 262
Set-StrictMode 180
Set-Variable 180
Set-WSManQuickConfig 109
SharePoint Server 2010

282–285
sharing scripts 193
ShellHub.com 290
shortcuts 49
shotgun debugging 263
ShouldProcess method of

$PSCmdlet 238
ShouldProcess protocol 238
signatures 163
signed scripts

author identity 164
encryption 165
keys 164
requirements 163
verification 165

SilentlyContinue setting 189,
243, 258

single object type 179
single quotation marks 172, 293
slash (/) 295
snap-ins 50–52

finding commands added
by 51

finding providers added by 51
help for 54
in PowerShell 49
listing installed 50
loading 50, 58
preloading 49, 58, 265
purpose of 48
removing 54
usage examples 59

snapshots 40
Sort-Object 67
sorting 66
splatting 294
Split method 272
splitting arrays 270
square brackets 28, 32, 175, 293,

295
SSH 107
Start-Job 133
Start-SPAssignment 283
starting services 45

Stop function 243
Stop-Job 140
Stop-Service 73–74
Stop-SPAssignment 283
strict mode 180
string functions 271
string object type 179
string parameters 31
string replacement 270
strings 270

as objects 271
converting case 272
formatting 213
here-string 294
IndexOf method 272
joining 270
manipulating 271
repeating 177
trimming 272

SupportsShouldProcess() 238
suppressing

errors 243
output 185

suspend mode 262
Switch construct 223–224
switch parameters in help

files 30
SwitchParameter 31
SYNOPSIS keyword 197
syntax errors 253–254
System.Diagnostics.Process 39
System.Reflection.Assembly 185
System.String 170

T

tab character 174, 271
Tab completion 26
table view definition 87
tables 89–91
TB shortcut 93
TechNet help repository 34
Telnet 107
temporary module 209
Terminal Services 286
terminating

errors 243
process 66

Test-Connection 16, 257
testing data types 270
text files 32, 79
text, disadvantages 63
throttle limit 113, 135

tools 228
ToUpper method 175, 272
trace code 189, 257
transactional operations 289
trap construct 245

alternative 247
scope 246
using with Try 249

trapping errors 247
trial, Windows Server 2008 R2 5
Trim method 272
True (Boolean value) 101
trust 163–164
Trustworthy Computing

Initiative 158
try construct 247–249
types 93, 179
typing accuracy 13, 70, 113, 222,

255
typos 253, 256

U

UAC (User Account
Control) 10, 118

UNC (Universal Naming
Convention) 162

Until keyword 221
unwinding 232, 237
uppercase conversion 272
User Account Control

(UAC) 10, 118
users 78

V

validating input 228
values 170
VARIABLE 180
variables 169

accessing object members
175

advanced declaration 180
assumptions about

contents 256
capturing input 183
changing contents 172
changing into parameters 214
commands 180
common types 179
count property 175
declaring 169, 178
static members (:) 295
static methods 185

tilde (~) character 173, 292
ToLower method 175, 272

drive 180
error 249

Download from Wow! eBook <www.wowebook.com>

INDEX 309

variables (continued)
$ in name 170
index number 175
multiple objects 174–175
names 170–172, 293
overview 169
persistence 171
preference 258
preventing logic errors 179
replacement in double

quotes 258, 293
retrieving contents 171
scope 201
setting contents 170
static values 194
types 177
usage example 170
use in values 171
watching 262
within double quotation

marks 172
within literal strings 172

VBScript language
approach to mass

management 144
enumeration 145
security issues 158
using WMI examples 125

verbose output, producing 189
VerbosePreference 189
virtual machines 285
VMware 285–286
vSphere void 285–286

W

Wait-Job 141
WarningPreference configura-

tion variable 189
warnings, producing 189
watching variables 262
web resources 290
Web Services for Management

(WS-MAN) 107
WebAdministration 289
-whatif parameter 46, 57, 237
Where-Object 100, 102

instead of ForEach-Object
287

operation of 103
While keyword 221
Wide lists 91
-wildcard parameter of

Win32_BIOS WMI class 121
Win32_Desktop WMI class 124
Win32_LogicalDisk WMI

class 121
Win32_NetworkAdapterConfig-

uration WMI class 146
Win32_PingStatus class 260
Win32_Service WMI class 121,

150
Win32_TapeDrive WMI

class 121
Windows features 57
Windows Forms 289
Windows Management Instru-

mentation. See WMI
Windows Presentation Founda-

tion (WPF) 289
Windows Remote Management

(WinRM) 108
Windows Server 2008 R2 trial 5
WindowsITPro.com 50
WinRM 108–110
WMI

alternate credentials 125
as object 120
backslash 127
CIM_ class name prefix 121
-class parameter 125
classes 121
comparison operators 127
computer name 127
corruption 122
custom columns in

output 128
default display properties 125
default namespace 125
differences between

computers 120
differences between Windows

versions 129
documentation 129
downsides 122
duplicate class names 121
executing methods 148
exploring 123–125
filter criteria 127
filtering 102, 125, 130, 295
finding classes 123
formatting 127
instances 121
Invoke-WmiMethod vs.

ForEach-Object 153
listing classes 125
listing namespaces 125

methods 122, 146
namespaces organization 121
__PATH property 127
pattern for invoking

methods 153
properties 122
providers 120
purpose 120
querying 125–128
quotes in comparisons 127
rebuilding 122
remote computers 127
repository 122
ReturnValue property 149
RPC errors 256
__SERVER property 127
sorting 127
system properties in

output 127
used by cmdlets 123
using search engines 124
using VBScript examples 125
via remoting 207
viewing all properties 125
vs. cmdlets 122
Win32_ class name prefix 121

WMI Explorer 123–124
worker functions 232
WPF (Windows Presentation

Foundation) 289
Write-Debug 189, 257, 261
Write-Error 189
Write-Host

alternatives 188
disadvantages 215
using 186
vs. Write-Output 188

Write-Output 187–188, 216
Write-Progress 189
Write-Verbose 189
Write-Warning 189
Writing Secure Code (book) 158
WS-MAN (Web Services for

Management) 107

X

XCACLS tool 289
XCOPY 289
XML files 40
Switch 224
wildcards in Help system 25

method invocation
output 148

xml type 179
XML-formatted data 288

Download from Wow! eBook <www.wowebook.com>

INDEX310
Download from Wow! eBook <www.wowebook.com>

	PowerShell-front
	brief contents
	contents
	preface
	about this book
	about the author
	acknowledgments
	1 Before you begin
	1.1 Why you can’t afford to ignore PowerShell
	1.2 Is this book for you?
	1.3 How to use this book
	1.4 Setting up your lab environment
	1.5 Installing Windows PowerShell
	1.6 Online resources
	1.7 Being immediately effective with PowerShell

	2 Running commands
	2.1 Not scripting: just running commands
	2.2 Opening PowerShell
	2.3 Managing files and folders—you know this!
	2.4 Accuracy counts
	2.5 Not just files and folders: introducing PSDrives
	2.6 Support for external commands
	2.7 The same old commands—almost
	2.8 Common points of confusion
	2.8.1 Typing cmdlet names
	2.8.2 Typing parameters

	2.9 Lab

	3 Using the help system
	3.1 The help system: how you discover commands
	3.2 Asking for help
	3.3 Using help to find commands
	3.4 Interpreting the help
	3.4.1 Parameter sets and common parameters
	3.4.2 Optional and mandatory parameters
	3.4.3 Positional parameters
	3.4.4 Parameter values
	3.4.5 Examples

	3.5 Accessing “about” topics
	3.6 Accessing online help
	3.7 Lab
	3.8 Ideas for on your own

	4 The pipeline: connecting commands
	4.1 Connect one command to another: less work for you!
	4.2 Exporting to a CSV or XML file
	4.3 Piping to a file or printer
	4.4 Converting to HTML
	4.5 Using cmdlets to kill processes and stop services
	4.6 Lab

	5 Adding commands
	5.1 How one shell can do everything
	5.2 About product-specific management shells
	5.3 Extensions: finding and adding snap-ins
	5.4 Extensions: finding and adding modules
	5.5 Command conflict and removing extensions
	5.6 Finding help on newly added commands
	5.7 Playing with Server Manager via command line!
	5.8 Profile scripts: preloading extensions when the shell starts
	5.9 Common points of confusion
	5.10 Lab
	5.11 Ideas for on your own

	6 Objects: just data by another name
	6.1 What are objects?
	6.2 Why PowerShell uses objects
	6.3 Discovering objects: Get-Member
	6.4 Object attributes, or “properties”
	6.5 Object actions, or “methods”
	6.6 Sorting objects
	6.7 Selecting the properties you want
	6.8 Objects until the very end
	6.9 Common points of confusion
	6.10 Lab

	7 The pipeline, deeper
	7.1 The pipeline: enabling power with less typing
	7.2 Pipeline input ByValue, or why Stop-Service works
	7.3 Parentheses instead of pipelines
	7.4 Pipeline input ByPropertyName
	7.5 Creating new AD users, fast and easy
	7.6 When things don’t line up: custom properties
	7.7 Extracting the value from a single property
	7.8 Lab

	8 Formatting—and why it’s done on the right
	8.1 Formatting: making what you see prettier
	8.2 About the default formatting
	8.3 Formatting tables
	8.4 Formatting lists
	8.5 Formatting wide
	8.6 Custom columns and list entries
	8.7 Going out: to a file, a printer, or the host
	8.8 Another out: GridViews
	8.9 Common points of confusion
	8.9.1 Always format right
	8.9.2 One type of object at a time, please

	8.10 Lab
	8.11 Ideas for on your own

	9 Filtering and comparisons
	9.1 Making the shell give you just what you need
	9.2 Filter left
	9.3 Comparison operators
	9.4 Filtering objects out of the pipeline
	9.5 The iterative command-line model
	9.6 Common points of confusion
	9.6.1 Filter left, please
	9.6.2 When $_ is allowed

	9.7 Lab
	9.8 Ideas for on your own

	10 Remote control: one to one, and one to many
	10.1 The idea behind remote PowerShell
	10.2 WinRM overview
	10.3 Using Enter-PSSession and Exit-PSSession for 1:1 remoting
	10.4 Using Invoke-Command for one-to-many remoting
	10.5 Differences between remote and local commands
	10.5.1 Invoke-Command versus -ComputerName
	10.5.2 Local versus remote processing

	10.6 But wait, there’s more
	10.7 Common points of confusion
	10.8 Lab
	10.9 Ideas for on your own

	11 Tackling Windows Management Instrumentation
	11.1 Retrieving management information
	11.2 A WMI primer
	11.3 The bad news about WMI
	11.4 Exploring WMI
	11.5 Using Get-WmiObject
	11.6 WMI documentation
	11.7 Common points of confusion
	11.8 Lab
	11.9 Ideas for on your own

	12 Multitasking with background jobs
	12.1 Making PowerShell do multiple things at the same time
	12.2 Synchronous versus asynchronous
	12.3 Creating a local job
	12.4 WMI, as a job
	12.5 Remoting, as a job
	12.6 Getting job results
	12.7 Working with child jobs
	12.8 Commands for managing jobs
	12.9 Common points of confusion

	13 Working with bunches of objects, one at a time
	13.1 Automation for mass management
	13.2 The preferred way: batch cmdlets
	13.3 The WMI way: invoking WMI methods
	13.4 The backup plan: enumerating objects
	13.5 Common points of confusion
	13.5.1 Which way is the right way?
	13.5.2 WMI methods versus cmdlets
	13.5.3 Method documentation
	13.5.4 ForEach-Object confusion

	13.6 Lab

	14 Security alert!
	14.1 Keeping the shell secure
	14.2 Windows PowerShell security goals
	14.3 Execution policy and code signing
	14.3.1 Execution policy settings
	14.3.2 Digital code signing

	14.4 Other security measures
	14.5 Other security holes?
	14.6 Security recommendations
	14.7 Lab

	15 Variables: a place to store your stuff
	15.1 Introduction to variables
	15.2 Storing values in variables
	15.3 Fun tricks with quotes
	15.4 Storing lots of objects in a variable
	15.5 Declaring a variable’s type
	15.6 Commands for working with variables
	15.7 Variable best practices
	15.8 Common points of confusion
	15.9 Lab
	15.10 Ideas for on your own

	16 Input and output
	16.1 Prompting for, and displaying, information
	16.2 Read-Host
	16.3 Write-Host
	16.4 Write-Output
	16.5 Other ways to write
	16.6 Lab
	16.7 Ideas for on your own

	17 You call this scripting?
	17.1 Not programming … more like batch files
	17.2 Making commands repeatable
	17.3 Parameterizing commands
	17.4 Creating a parameterized script
	17.5 Documenting your script
	17.6 One script, one pipeline
	17.7 A quick look at scope
	17.8 Lab
	17.9 Ideas for on your own

	18 Sessions: remote control, with less work
	18.1 Making PowerShell remoting a bit easier
	18.2 Creating and using reusable sessions
	18.3 Using sessions with Enter-PSSession
	18.4 Using sessions with Invoke-Command
	18.5 Implicit remoting: importing a session
	18.6 Lab
	18.7 Ideas for on your own

	19 From command to script to function
	19.1 Turning a command into a reusable tool
	19.2 Modularizing: one task, one function
	19.3 Simple and parameterized functions
	19.4 Returning a value from a function
	19.5 Returning objects from a function
	19.6 Lab
	19.7 Ideas for on your own

	20 Adding logic and loops
	20.1 Automating complex, multi-step processes
	20.2 Now we’re “scripting”
	20.3 The If construct
	20.4 The Switch construct
	20.5 The For construct
	20.6 The ForEach construct
	20.7 Why scripting isn’t always necessary
	20.8 Lab

	21 Creating your own “cmdlets” and modules
	21.1 Turning a reusable tool into a full-fledged cmdlet
	21.2 Functions that work in the pipeline
	21.3 Functions that look like cmdlets
	21.4 Bundling functions into modules
	21.5 Keeping support functions private
	21.6 Lab
	21.7 Ideas for on your own

	22 Trapping and handling errors
	22.1 Dealing with errors you just knew were going to happen
	22.2 Errors and exceptions
	22.3 The $ErrorActionPreference variable
	22.4 The -ErrorAction parameter
	22.5 Using a Trap construct
	22.6 Trap scope
	22.7 Using a Try construct
	22.8 The -ErrorVariable parameter
	22.9 Common points of confusion
	22.10 Lab
	22.11 Ideas for on your own

	23 Debugging techniques
	23.1 An easy guide to eliminating bugs
	23.1.1 Syntax errors
	23.1.2 Logic errors

	23.2 Identifying your expectations
	23.3 Adding trace code
	23.4 Working with breakpoints
	23.5 Common points of confusion
	23.6 Lab

	24 Additional random tips, tricks, and techniques
	24.1 Profiles, prompts, and colors: customizing the shell
	24.1.1 PowerShell profiles
	24.1.2 Customizing the prompt
	24.1.3 Tweaking colors

	24.2 Operators: -as, -is, -replace, -join, -split
	24.2.1 -as and -is
	24.2.2 -replace
	24.2.3 -join and -split

	24.3 String manipulation
	24.4 Date manipulation
	24.5 Dealing with WMI dates

	25 Final exam: tackling an administrative task from scratch
	25.1 Tips before you begin
	25.2 Lab
	25.3 Lab solution

	26 Beyond the operating system: taking PowerShell further
	26.1 Everything you’ve learned works the same everywhere
	26.2 SharePoint Server 2010
	26.3 VMware vSphere and vCenter
	26.4 Third-party Active Directory management

	27 Never the end
	27.1 Ideas for further exploration
	27.2 “Now that I’m done, where do I start?”
	27.3 Other resources you’ll grow to love

	28 PowerShell cheat sheet
	28.1 Punctuation
	28.2 Help file
	28.3 Operators
	28.4 Custom property and column syntax
	28.5 Pipeline parameter input
	28.6 When to use $_

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	PowerShell-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

